`Model [Palette() form models.model] not recognized`, installation inside `conda` environment
See original GitHub issuesetup
Running on Windows Subsystem for Linux 2 (WSL2).
git clone https://github.com/Janspiry/Palette-Image-to-Image-Diffusion-Models.git
cd Palette-Image-to-Image-Diffusion-Models
conda
installation per #20
command
python run.py -p train -c config/inpainting_celebahq_dummy.json --debug
inpainting_celebahq_dummy.json
{
"name": "inpainting_celebahq", // experiments name
"gpu_ids": [
0
], // gpu ids list, default is single 0
"seed": -1, // random seed, seed <0 represents randomization not used
"finetune_norm": false, // find the parameters to optimize
"path": { //set every part file path
"base_dir": "experiments", // base path for all log except resume_state
"code": "code", // code backup
"tb_logger": "tb_logger", // path of tensorboard logger
"results": "results",
"checkpoint": "checkpoint",
"resume_state": "experiments/train_inpainting_celebahq_220426_233652/checkpoint/190"
// "resume_state": null // ex: 100, loading .state and .pth from given epoch and iteration
},
"datasets": { // train or test
"train": {
"which_dataset": { // import designated dataset using arguments
"name": [
"data.dataset",
"InpaintDataset"
], // import Dataset() class / function(not recommend) from data.dataset.py (default is [data.dataset.py])
"args": { // arguments to initialize dataset
"data_root": "datasets/celebahq_dummy/flist/train.flist",
"data_len": -1,
"mask_config": {
"mask_mode": "hybrid"
}
}
},
"dataloader": {
"validation_split": 2, // percent or number
"args": { // arguments to initialize train_dataloader
"batch_size": 3, // batch size in each gpu
"num_workers": 4,
"shuffle": true,
"pin_memory": true,
"drop_last": true
},
"val_args": { // arguments to initialize valid_dataloader, will overwrite the parameters in train_dataloader
"batch_size": 1, // batch size in each gpu
"num_workers": 4,
"shuffle": false,
"pin_memory": true,
"drop_last": false
}
}
},
"test": {
"which_dataset": {
"name": "InpaintDataset", // import Dataset() class / function(not recommend) from default file
"args": {
"data_root": "datasets/celebahq_dummy/flist/test.flist",
"mask_config": {
"mask_mode": "center"
}
}
},
"dataloader": {
"args": {
"batch_size": 8,
"num_workers": 4,
"pin_memory": true
}
}
}
},
"model": { // networks/metrics/losses/optimizers/lr_schedulers is a list and model is a dict
"which_model": { // import designated model(trainer) using arguments
"name": [
"models.model",
"Palette"
], // import Model() class / function(not recommend) from models.model.py (default is [models.model.py])
"args": {
"sample_num": 8, // process of each image
"task": "inpainting",
"ema_scheduler": {
"ema_start": 1,
"ema_iter": 1,
"ema_decay": 0.9999
},
"optimizers": [
{
"lr": 5e-5,
"weight_decay": 0
}
]
}
},
"which_networks": [ // import designated list of networks using arguments
{
"name": [
"models.network",
"Network"
], // import Network() class / function(not recommend) from default file (default is [models/network.py])
"args": { // arguments to initialize network
"init_type": "kaiming", // method can be [normal | xavier| xavier_uniform | kaiming | orthogonal], default is kaiming
"module_name": "guided_diffusion", // sr3 | guided_diffusion
"unet": {
"in_channel": 6,
"out_channel": 3,
"inner_channel": 64,
"channel_mults": [
1,
2,
4,
8
],
"attn_res": [
// 32,
16
// 8
],
"num_head_channels": 32,
"res_blocks": 2,
"dropout": 0.2,
"image_size": 256
},
"beta_schedule": {
"train": {
"schedule": "linear",
"n_timestep": 2000,
// "n_timestep": 10, // debug
"linear_start": 1e-6,
"linear_end": 0.01
},
"test": {
"schedule": "linear",
"n_timestep": 1000,
"linear_start": 1e-4,
"linear_end": 0.09
}
}
}
}
],
"which_losses": [ // import designated list of losses without arguments
"mse_loss" // import mse_loss() function/class from default file (default is [models/losses.py]), equivalent to { "name": "mse_loss", "args":{}}
],
"which_metrics": [ // import designated list of metrics without arguments
"mae" // import mae() function/class from default file (default is [models/metrics.py]), equivalent to { "name": "mae", "args":{}}
]
},
"train": { // arguments for basic training
"n_epoch": 1e8, // max epochs, not limited now
"n_iter": 1e8, // max interations
"val_epoch": 5, // valdation every specified number of epochs
"save_checkpoint_epoch": 10,
"log_iter": 1e3, // log every specified number of iterations
"tensorboard": true // tensorboardX enable
},
"debug": { // arguments in debug mode, which will replace arguments in train
"val_epoch": 1,
"save_checkpoint_epoch": 1,
"log_iter": 2,
"debug_split": 50 // percent or number, change the size of dataloder to debug_split.
}
}
Directory Structure
Error
Exception has occurred: NotImplementedError (note: full exception trace is shown but execution is paused at: _run_module_as_main)
Model [Palette() form models.model] not recognized.
File "/home/sgbaird/GitHub/Palette-Image-to-Image-Diffusion-Models/core/praser.py", line 41, in init_obj
ret = attr(*args, **kwargs)
File "/home/sgbaird/GitHub/Palette-Image-to-Image-Diffusion-Models/models/model.py", line 49, in __init__
self.netG.set_new_noise_schedule(phase=self.phase)
File "/home/sgbaird/GitHub/Palette-Image-to-Image-Diffusion-Models/models/network.py", line 36, in set_new_noise_schedule
self.register_buffer('gammas', to_torch(gammas))
File "/home/sgbaird/miniconda3/envs/palette/lib/python3.9/site-packages/torch/cuda/__init__.py", line 166, in _lazy_init
raise AssertionError("Torch not compiled with CUDA enabled")
During handling of the above exception, another exception occurred:
File "/home/sgbaird/GitHub/Palette-Image-to-Image-Diffusion-Models/core/praser.py", line 49, in init_obj
raise NotImplementedError('{} [{:s}() form {:s}] not recognized.'.format(init_type, class_name, file_name))
File "/home/sgbaird/GitHub/Palette-Image-to-Image-Diffusion-Models/models/__init__.py", line 10, in create_model
model = init_obj(model_opt, logger, default_file_name='models.model', init_type='Model')
File "/home/sgbaird/GitHub/Palette-Image-to-Image-Diffusion-Models/run.py", line 44, in main_worker
model = create_model(
File "/home/sgbaird/GitHub/Palette-Image-to-Image-Diffusion-Models/run.py", line 92, in <module>
main_worker(0, 1, opt)
File "/home/sgbaird/miniconda3/envs/palette/lib/python3.9/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/home/sgbaird/miniconda3/envs/palette/lib/python3.9/runpy.py", line 97, in _run_module_code
_run_code(code, mod_globals, init_globals,
File "/home/sgbaird/miniconda3/envs/palette/lib/python3.9/runpy.py", line 268, in run_path
return _run_module_code(code, init_globals, run_name,
File "/home/sgbaird/miniconda3/envs/palette/lib/python3.9/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/home/sgbaird/miniconda3/envs/palette/lib/python3.9/runpy.py", line 197, in _run_module_as_main (Current frame)
return _run_code(code, main_globals, None,
Issue Analytics
- State:
- Created a year ago
- Comments:5 (2 by maintainers)
Top Results From Across the Web
VS Code not detecting package in conda environment
Open the command palette (Ctrl + Shift + P in linux) · Type > Python select interpreter and press enter · Paste the...
Read more >Python and Django tutorial in Visual Studio Code
Python Django tutorial demonstrating IntelliSense, code navigation, and debugging for both code and templates in Visual Studio Code, the best Python IDE.
Read more >Managing environments - Conda
With conda, you can create, export, list, remove, and update environments that have different versions of Python and/or packages installed in them.
Read more >How to Setup Your Python Environment for Machine Learning ...
In this tutorial, you will discover how to set up a Python machine learning development environment using Anaconda.
Read more >Guide to Conda for TensorFlow and PyTorch
However, pip and conda don't always play nice together. The primary issue is that conda is not able to control packages that it...
Read more >
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Feel free to reopen the issue if there is any question.
I’m having the same issue with the current status of “master” branch. Commit “https://github.com/Janspiry/Palette-Image-to-Image-Diffusion-Models/tree/d1b9b010edeee177aaa15850002766e370a8307b” is working fine for me. A bug was probably introduced in commit “ed29b1ce9ff2ae41791d52642004385886f0680f”