[BUG] Unable to convert COCO to TensorFlow dataset
See original GitHub issueCalling .to_tensorflow()
on any of the COCO datasets yields TypeError. It happens for both TensorFlow 1.x and TensorFlow 2.x.
The problematic code:
import hub
ds = hub.Dataset('activeloop/coco_train')
ds= ds.to_tensorflow()
Error message:
TypeError Traceback (most recent call last)
<ipython-input-6-6674a34504fe> in <module>()
----> 1 gen = ds.to_tensorflow()
6 frames
/usr/local/lib/python3.6/dist-packages/hub/api/dataset.py in to_tensorflow(self, indexes)
651
652 return tf.data.Dataset.from_generator(
--> 653 tf_gen, output_types=output_types, output_shapes=output_shapes
654 )
655
/usr/local/lib/python3.6/dist-packages/tensorflow/python/util/deprecation.py in new_func(*args, **kwargs)
536 'in a future version' if date is None else ('after %s' % date),
537 instructions)
--> 538 return func(*args, **kwargs)
539
540 doc = _add_deprecated_arg_notice_to_docstring(
/usr/local/lib/python3.6/dist-packages/tensorflow/python/data/ops/dataset_ops.py in from_generator(generator, output_types, output_shapes, args, output_signature)
830 output_shapes = nest.map_structure_up_to(output_types,
831 tensor_shape.as_shape,
--> 832 output_shapes)
833 output_signature = nest.map_structure_up_to(output_types,
834 tensor_spec.TensorSpec,
/usr/local/lib/python3.6/dist-packages/tensorflow/python/data/util/nest.py in map_structure_up_to(shallow_tree, func, *inputs)
462 raise ValueError("Cannot map over no sequences")
463 for input_tree in inputs:
--> 464 assert_shallow_structure(shallow_tree, input_tree)
465
466 # Flatten each input separately, apply the function to corresponding elements,
/usr/local/lib/python3.6/dist-packages/tensorflow/python/data/util/nest.py in assert_shallow_structure(shallow_tree, input_tree, check_types)
322 for shallow_branch, input_branch in zip(shallow_tree, input_tree):
323 assert_shallow_structure(shallow_branch, input_branch,
--> 324 check_types=check_types)
325
326
/usr/local/lib/python3.6/dist-packages/tensorflow/python/data/util/nest.py in assert_shallow_structure(shallow_tree, input_tree, check_types)
322 for shallow_branch, input_branch in zip(shallow_tree, input_tree):
323 assert_shallow_structure(shallow_branch, input_branch,
--> 324 check_types=check_types)
325
326
/usr/local/lib/python3.6/dist-packages/tensorflow/python/data/util/nest.py in assert_shallow_structure(shallow_tree, input_tree, check_types)
303 "The two structures don't have the same sequence type. Input "
304 "structure has type %s, while shallow structure has type %s."
--> 305 % (type(input_tree), type(shallow_tree)))
306
307 if len(input_tree) != len(shallow_tree):
TypeError: The two structures don't have the same sequence type. Input structure has type <class 'tuple'>, while shallow structure has type <class 'dict'>.
Here is a GoogleColab notebook that reproduces the error: https://colab.research.google.com/drive/1tnlnqivwfgfL38U1hrCMJEDYLfhXA96-?usp=sharing
Issue Analytics
- State:
- Created 3 years ago
- Comments:8 (6 by maintainers)
Top Results From Across the Web
Failed to running ssd workloads with COCO dataset #408
The detail error message is: tensorflow.python.framework.errors_impl.InvalidArgumentError: StringToNumberOp could not correctly convert ...
Read more >Getting an error while converting my dataset in TFrecord ...
And i want to convert my dataset into TFRecord format but when i am running the build_voc2012_data.py file i am getting an error....
Read more >failed to convert tensorflow ssd mobilnetv1 coco model with ...
Solved: Error : [ ERROR ] Shape [-1 -1 -1 3] is not fully defined for output 0 of "image_tensor". Use --input_shape with...
Read more >TensorFlow Datasets
TFDS provides a collection of ready-to-use datasets for use with TensorFlow, Jax, and other Machine Learning frameworks.
Read more >Writing custom datasets - TensorFlow
Follow this guide to create a new dataset (either in TFDS or in your own repository). Check our list of datasets to see...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
@oKatanaaa the dataset without the sequence is ready for you. Just run:
@haiyangdeperci yes, the dataset technical debt is accruing 😦