Error: ('Keyword argument not understood:', 'freeze') while trying to convert RetinaNet (.h5) --> (.pb)
See original GitHub issueI downloaded a pre trained Keras model from: https://github.com/fizyr/keras-retinanet/releases/download/0.4.1/resnet50_coco_best_v2.1.0.h5
Keras and Tensorflow version:
>>> import keras as k
Using TensorFlow backend.
>>> k.__version__
'2.2.0'
>>> import tensorflow as tf
>>> tf.__version__
'1.8.0'
>>>
I tried with keras version 2.1.0 too, get the same error.
I get the error with command: python keras_to_tensorflow.py -input_model_file resnet50_coco_best_v2.1.0.h5
Traceback (most recent call last):
File "keras_to_tensorflow.py", line 114, in <module>
net_model = load_model(weight_file_path)
File "/Users/srajanku/anaconda2/envs/retina-test/lib/python3.6/site-packages/keras/engine/saving.py", line 261, in load_model
model = model_from_config(model_config, custom_objects=custom_objects)
File "/Users/srajanku/anaconda2/envs/retina-test/lib/python3.6/site-packages/keras/engine/saving.py", line 335, in model_from_config
return deserialize(config, custom_objects=custom_objects)
File "/Users/srajanku/anaconda2/envs/retina-test/lib/python3.6/site-packages/keras/layers/__init__.py", line 55, in deserialize
printable_module_name='layer')
File "/Users/srajanku/anaconda2/envs/retina-test/lib/python3.6/site-packages/keras/utils/generic_utils.py", line 145, in deserialize_keras_object
list(custom_objects.items())))
File "/Users/srajanku/anaconda2/envs/retina-test/lib/python3.6/site-packages/keras/engine/network.py", line 1036, in from_config
process_layer(layer_data)
File "/Users/srajanku/anaconda2/envs/retina-test/lib/python3.6/site-packages/keras/engine/network.py", line 1022, in process_layer
custom_objects=custom_objects)
File "/Users/srajanku/anaconda2/envs/retina-test/lib/python3.6/site-packages/keras/layers/__init__.py", line 55, in deserialize
printable_module_name='layer')
File "/Users/srajanku/anaconda2/envs/retina-test/lib/python3.6/site-packages/keras/utils/generic_utils.py", line 147, in deserialize_keras_object
return cls.from_config(config['config'])
File "/Users/srajanku/anaconda2/envs/retina-test/lib/python3.6/site-packages/keras/engine/base_layer.py", line 1124, in from_config
return cls(**config)
File "/Users/srajanku/anaconda2/envs/retina-test/lib/python3.6/site-packages/keras/legacy/interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "/Users/srajanku/anaconda2/envs/retina-test/lib/python3.6/site-packages/keras/layers/normalization.py", line 75, in __init__
super(BatchNormalization, self).__init__(**kwargs)
File "/Users/srajanku/anaconda2/envs/retina-test/lib/python3.6/site-packages/keras/engine/base_layer.py", line 128, in __init__
raise TypeError('Keyword argument not understood:', kwarg)
TypeError: ('Keyword argument not understood:', 'freeze')
Issue Analytics
- State:
- Created 5 years ago
- Comments:7 (1 by maintainers)
Top Results From Across the Web
TypeError('Keyword argument not understood:', 'groups') in ...
I just downloaded both models (one using keras and one using tensorflow.keras ) and tried using from keras.models import load_model and from ...
Read more >How to run Keras model on Jetson Nano - DLology
Step 1: Freeze Keras model and convert into TensorRT model First lets loads a Keras model. For this tutorial, we use pre-trained MobileNetV2...
Read more >Error while converting keras model to tensorflow saved model
Able to get keras model h5 format for masked RCNN. I have tried 2 approaches: 1.While trying to convert keras model to tensorflow ......
Read more >keras-retinanet - Python Package Health Analysis - Snyk
load_weights(weights_path, by_name=True) and saving this model. If the change has been too significant, you should retrain your model (you can try to load...
Read more >Full text of "Python Ebooks" - Internet Archive
Great online material like Fast.ai and DeepLearning.ai made understanding how to ... In this book, we want to equip you with the knowledge...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
I figured in out, this is how its done
in keras_to_tensorflow.py Add from keras_retinanet import models
Then comment line 62 # model = keras.models.load_model(input_model_path)
and add the following like this model = models.load_model(input_model_path, backbone_name=“resnet50”)
It works!!! thanks!!!