"dag_id could not be found" when running airflow on KubernetesExecutor
See original GitHub issueApache Airflow version: 2.0.0
Kubernetes version (if you are using kubernetes) (use kubectl version
): v1.19.4
What happened: I get this error when try to execute tasks using kubernetes
[2021-01-14 19:39:17,628] {dagbag.py:440} INFO - Filling up the DagBag from /opt/airflow/dags/repo/bash.py
Traceback (most recent call last):
File "/home/airflow/.local/bin/airflow", line 8, in <module>
sys.exit(main())
File "/home/airflow/.local/lib/python3.6/site-packages/airflow/__main__.py", line 40, in main
args.func(args)
File "/home/airflow/.local/lib/python3.6/site-packages/airflow/cli/cli_parser.py", line 48, in command
return func(*args, **kwargs)
File "/home/airflow/.local/lib/python3.6/site-packages/airflow/utils/cli.py", line 89, in wrapper
return f(*args, **kwargs)
File "/home/airflow/.local/lib/python3.6/site-packages/airflow/cli/commands/task_command.py", line 216, in task_run
dag = get_dag(args.subdir, args.dag_id)
File "/home/airflow/.local/lib/python3.6/site-packages/airflow/utils/cli.py", line 189, in get_dag
'parse.'.format(dag_id)
airflow.exceptions.AirflowException: dag_id could not be found: bash. Either the dag did not exist or it failed to parse.
What you expected to happen: get executed and terminate
How to reproduce it: deploy airflow helm chart using this values.yaml:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
---
# Default values for airflow.
# This is a YAML-formatted file.
# Declare variables to be passed into your templates.
# User and group of airflow user
uid: 50000
gid: 50000
# Airflow home directory
# Used for mount paths
airflowHome: "/opt/airflow"
# Default airflow repository -- overrides all the specific images below
defaultAirflowRepository: apache/airflow
# Default airflow tag to deploy
defaultAirflowTag: 2.0.0
# Select certain nodes for airflow pods.
nodeSelector: { }
affinity: { }
tolerations: [ ]
# Add common labels to all objects and pods defined in this chart.
labels: { }
# Ingress configuration
ingress:
# Enable ingress resource
enabled: false
# Configs for the Ingress of the web Service
web:
# Annotations for the web Ingress
annotations: { }
# The path for the web Ingress
path: ""
# The hostname for the web Ingress
host: ""
# configs for web Ingress TLS
tls:
# Enable TLS termination for the web Ingress
enabled: false
# the name of a pre-created Secret containing a TLS private key and certificate
secretName: ""
# HTTP paths to add to the web Ingress before the default path
precedingPaths: [ ]
# Http paths to add to the web Ingress after the default path
succeedingPaths: [ ]
# Configs for the Ingress of the flower Service
flower:
# Annotations for the flower Ingress
annotations: { }
# The path for the flower Ingress
path: ""
# The hostname for the flower Ingress
host: ""
# configs for web Ingress TLS
tls:
# Enable TLS termination for the flower Ingress
enabled: false
# the name of a pre-created Secret containing a TLS private key and certificate
secretName: ""
# HTTP paths to add to the flower Ingress before the default path
precedingPaths: [ ]
# Http paths to add to the flower Ingress after the default path
succeedingPaths: [ ]
# Network policy configuration
networkPolicies:
# Enabled network policies
enabled: false
# Extra annotations to apply to all
# Airflow pods
airflowPodAnnotations: { }
# Enable RBAC (default on most clusters these days)
rbacEnabled: true
# Airflow executor
# Options: SequentialExecutor, LocalExecutor, CeleryExecutor, KubernetesExecutor
executor: "KubernetesExecutor"
# If this is true and using LocalExecutor/SequentialExecutor/KubernetesExecutor, the scheduler's
# service account will have access to communicate with the api-server and launch pods.
# If this is true and using the CeleryExecutor, the workers will be able to launch pods.
allowPodLaunching: true
# Images
images:
airflow:
repository: ~
tag: ~
pullPolicy: IfNotPresent
pod_template:
repository: ~
tag: ~
pullPolicy: IfNotPresent
flower:
repository: ~
tag: ~
pullPolicy: IfNotPresent
statsd:
repository: apache/airflow
tag: airflow-statsd-exporter-2020.09.05-v0.17.0
pullPolicy: IfNotPresent
redis:
repository: redis
tag: 6-buster
pullPolicy: IfNotPresent
pgbouncer:
repository: apache/airflow
tag: airflow-pgbouncer-2020.09.05-1.14.0
pullPolicy: IfNotPresent
pgbouncerExporter:
repository: apache/airflow
tag: airflow-pgbouncer-exporter-2020.09.25-0.5.0
pullPolicy: IfNotPresent
gitSync:
repository: k8s.gcr.io/git-sync
tag: v3.1.6
pullPolicy: IfNotPresent
# Environment variables for all airflow containers
env:
- name: "AIRFLOW__KUBERNETES__GIT_SYNC_RUN_AS_USER"
value: "65533"
# Secrets for all airflow containers
secret: [ ]
# - envName: ""
# secretName: ""
# secretKey: ""
# Extra secrets that will be managed by the chart
# (You can use them with extraEnv or extraEnvFrom or some of the extraVolumes values).
# The format is "key/value" where
# * key (can be templated) is the the name the secret that will be created
# * value: an object with the standard 'data' or 'stringData' key (or both).
# The value associated with those keys must be a string (can be templated)
extraSecrets: { }
# eg:
# extraSecrets:
# {{ .Release.Name }}-airflow-connections:
# data: |
# AIRFLOW_CONN_GCP: 'base64_encoded_gcp_conn_string'
# AIRFLOW_CONN_AWS: 'base64_encoded_aws_conn_string'
# stringData: |
# AIRFLOW_CONN_OTHER: 'other_conn'
# {{ .Release.Name }}-other-secret-name-suffix: |
# data: |
# ...
# Extra ConfigMaps that will be managed by the chart
# (You can use them with extraEnv or extraEnvFrom or some of the extraVolumes values).
# The format is "key/value" where
# * key (can be templated) is the the name the configmap that will be created
# * value: an object with the standard 'data' key.
# The value associated with this keys must be a string (can be templated)
extraConfigMaps: { }
# eg:
# extraConfigMaps:
# {{ .Release.Name }}-airflow-variables:
# data: |
# AIRFLOW_VAR_HELLO_MESSAGE: "Hi!"
# AIRFLOW_VAR_KUBERNETES_NAMESPACE: "{{ .Release.Namespace }}"
# Extra env 'items' that will be added to the definition of airflow containers
# a string is expected (can be templated).
extraEnv: ~
# eg:
# extraEnv: |
# - name: PLATFORM
# value: FR
# Extra envFrom 'items' that will be added to the definition of airflow containers
# A string is expected (can be templated).
extraEnvFrom: ~
# eg:
# extraEnvFrom: |
# - secretRef:
# name: '{{ .Release.Name }}-airflow-connections'
# - configMapRef:
# name: '{{ .Release.Name }}-airflow-variables'
# Airflow database config
data:
# If secret names are provided, use those secrets
metadataSecretName: ~
resultBackendSecretName: ~
# Otherwise pass connection values in
metadataConnection:
user: postgres
pass: postgres
host: ~
port: 5432
db: postgres
sslmode: disable
resultBackendConnection:
user: postgres
pass: postgres
host: ~
port: 5432
db: postgres
sslmode: disable
# Fernet key settings
fernetKey: ~
fernetKeySecretName: ~
# In order to use kerberos you need to create secret containing the keytab file
# The secret name should follow naming convention of the application where resources are
# name {{ .Release-name }}-<POSTFIX>. In case of the keytab file, the postfix is "kerberos-keytab"
# So if your release is named "my-release" the name of the secret should be "my-release-kerberos-keytab"
#
# The Keytab content should be available in the "kerberos.keytab" key of the secret.
#
# apiVersion: v1
# kind: Secret
# data:
# kerberos.keytab: <base64_encoded keytab file content>
# type: Opaque
#
#
# If you have such keytab file you can do it with similar
#
# kubectl create secret generic {{ .Release.name }}-kerberos-keytab --from-file=kerberos.keytab
#
kerberos:
enabled: false
ccacheMountPath: '/var/kerberos-ccache'
ccacheFileName: 'cache'
configPath: '/etc/krb5.conf'
keytabPath: '/etc/airflow.keytab'
principal: 'airflow@FOO.COM'
reinitFrequency: 3600
config: |
# This is an example config showing how you can use templating and how "example" config
# might look like. It works with the test kerberos server that we are using during integration
# testing at Apache Airflow (see `scripts/ci/docker-compose/integration-kerberos.yml` but in
# order to make it production-ready you must replace it with your own configuration that
# Matches your kerberos deployment. Administrators of your Kerberos instance should
# provide the right configuration.
[logging]
default = "FILE:{{ template "airflow_logs_no_quote" . }}/kerberos_libs.log"
kdc = "FILE:{{ template "airflow_logs_no_quote" . }}/kerberos_kdc.log"
admin_server = "FILE:{{ template "airflow_logs_no_quote" . }}/kadmind.log"
[libdefaults]
default_realm = FOO.COM
ticket_lifetime = 10h
renew_lifetime = 7d
forwardable = true
[realms]
FOO.COM = {
kdc = kdc-server.foo.com
admin_server = admin_server.foo.com
}
# Airflow Worker Config
workers:
# Number of airflow celery workers in StatefulSet
replicas: 1
# Allow KEDA autoscaling.
# Persistence.enabled must be set to false to use KEDA.
keda:
enabled: false
namespaceLabels: { }
# How often KEDA polls the airflow DB to report new scale requests to the HPA
pollingInterval: 5
# How many seconds KEDA will wait before scaling to zero.
# Note that HPA has a separate cooldown period for scale-downs
cooldownPeriod: 30
# Maximum number of workers created by keda
maxReplicaCount: 10
persistence:
# Enable persistent volumes
enabled: true
# Volume size for worker StatefulSet
size: 100Gi
# If using a custom storageClass, pass name ref to all statefulSets here
storageClassName:
# Execute init container to chown log directory.
# This is currently only needed in KinD, due to usage
# of local-path provisioner.
fixPermissions: false
kerberosSidecar:
# Enable kerberos sidecar
enabled: false
resources: { }
# limits:
# cpu: 100m
# memory: 128Mi
# requests:
# cpu: 100m
# memory: 128Mi
# Grace period for tasks to finish after SIGTERM is sent from kubernetes
terminationGracePeriodSeconds: 600
# This setting tells kubernetes that its ok to evict
# when it wants to scale a node down.
safeToEvict: true
# Annotations to add to worker kubernetes service account.
serviceAccountAnnotations: { }
# Mount additional volumes into worker.
extraVolumes: [ ]
extraVolumeMounts: [ ]
# Airflow scheduler settings
scheduler:
# Airflow 2.0 allows users to run multiple schedulers,
# However this feature is only recommended for MySQL 8+ and Postgres
replicas: 1
# Scheduler pod disruption budget
podDisruptionBudget:
enabled: false
# PDB configuration
config:
maxUnavailable: 1
resources: { }
# limits:
# cpu: 100m
# memory: 128Mi
# requests:
# cpu: 100m
# memory: 128Mi
# This setting can overwrite
# podMutation settings.
airflowLocalSettings: ~
# This setting tells kubernetes that its ok to evict
# when it wants to scale a node down.
safeToEvict: true
# Annotations to add to scheduler kubernetes service account.
serviceAccountAnnotations: { }
# Mount additional volumes into scheduler.
extraVolumes: [ ]
extraVolumeMounts: [ ]
# Airflow webserver settings
webserver:
allowPodLogReading: true
livenessProbe:
initialDelaySeconds: 15
timeoutSeconds: 30
failureThreshold: 20
periodSeconds: 5
readinessProbe:
initialDelaySeconds: 15
timeoutSeconds: 30
failureThreshold: 20
periodSeconds: 5
# Number of webservers
replicas: 1
# Additional network policies as needed
extraNetworkPolicies: [ ]
resources: { }
# limits:
# cpu: 100m
# memory: 128Mi
# requests:
# cpu: 100m
# memory: 128Mi
# Create initial user.
defaultUser:
enabled: true
role: Admin
username: admin
email: admin@example.com
firstName: admin
lastName: user
password: admin
# Mount additional volumes into webserver.
extraVolumes: [ ]
# - name: airflow-ui
# emptyDir: { }
extraVolumeMounts: [ ]
# - name: airflow-ui
# mountPath: /opt/airflow
# This will be mounted into the Airflow Webserver as a custom
# webserver_config.py. You can bake a webserver_config.py in to your image
# instead
webserverConfig: ~
# webserverConfig: |
# from airflow import configuration as conf
# # The SQLAlchemy connection string.
# SQLALCHEMY_DATABASE_URI = conf.get('core', 'SQL_ALCHEMY_CONN')
# # Flask-WTF flag for CSRF
# CSRF_ENABLED = True
service:
type: NodePort
## service annotations
annotations: { }
# Annotations to add to webserver kubernetes service account.
serviceAccountAnnotations: { }
# Flower settings
flower:
# Additional network policies as needed
extraNetworkPolicies: [ ]
resources: { }
# limits:
# cpu: 100m
# memory: 128Mi
# requests:
# cpu: 100m
# memory: 128Mi
# A secret containing the connection
secretName: ~
# Else, if username and password are set, create secret from username and password
username: ~
password: ~
service:
type: ClusterIP
# Statsd settings
statsd:
enabled: true
# Additional network policies as needed
extraNetworkPolicies: [ ]
resources: { }
# limits:
# cpu: 100m
# memory: 128Mi
# requests:
# cpu: 100m
# memory: 128Mi
service:
extraAnnotations: { }
# Pgbouncer settings
pgbouncer:
# Enable pgbouncer
enabled: false
# Additional network policies as needed
extraNetworkPolicies: [ ]
# Pool sizes
metadataPoolSize: 10
resultBackendPoolSize: 5
# Maximum clients that can connect to pgbouncer (higher = more file descriptors)
maxClientConn: 100
# Pgbouner pod disruption budget
podDisruptionBudget:
enabled: false
# PDB configuration
config:
maxUnavailable: 1
# Limit the resources to pgbouncerExported.
# When you specify the resource request the scheduler uses this information to decide which node to place
# the Pod on. When you specify a resource limit for a Container, the kubelet enforces those limits so
# that the running container is not allowed to use more of that resource than the limit you set.
# See: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
# Example:
#
# resource:
# limits:
# cpu: 100m
# memory: 128Mi
# requests:
# cpu: 100m
# memory: 128Mi
resources: { }
service:
extraAnnotations: { }
# https://www.pgbouncer.org/config.html
verbose: 0
logDisconnections: 0
logConnections: 0
sslmode: "prefer"
ciphers: "normal"
ssl:
ca: ~
cert: ~
key: ~
redis:
terminationGracePeriodSeconds: 600
persistence:
# Enable persistent volumes
enabled: true
# Volume size for worker StatefulSet
size: 1Gi
# If using a custom storageClass, pass name ref to all statefulSets here
storageClassName:
resources: { }
# limits:
# cpu: 100m
# memory: 128Mi
# requests:
# cpu: 100m
# memory: 128Mi
# If set use as redis secret
passwordSecretName: ~
brokerURLSecretName: ~
# Else, if password is set, create secret with it,
# else generate a new one on install
password: ~
# This setting tells kubernetes that its ok to evict
# when it wants to scale a node down.
safeToEvict: true
# Auth secret for a private registry
# This is used if pulling airflow images from a private registry
registry:
secretName: ~
# Example:
# connection:
# user: ~
# pass: ~
# host: ~
# email: ~
connection: { }
# Elasticsearch logging configuration
elasticsearch:
# Enable elasticsearch task logging
enabled: true
# A secret containing the connection
# secretName: ~
# Or an object representing the connection
# Example:
connection:
# user:
# pass:
host: elasticsearch-master-headless.elk.svc.cluster.local
port: 9200
# connection: {}
# All ports used by chart
ports:
flowerUI: 5555
airflowUI: 8080
workerLogs: 8793
redisDB: 6379
statsdIngest: 9125
statsdScrape: 9102
pgbouncer: 6543
pgbouncerScrape: 9127
# Define any ResourceQuotas for namespace
quotas: { }
# Define default/max/min values for pods and containers in namespace
limits: [ ]
# This runs as a CronJob to cleanup old pods.
cleanup:
enabled: false
# Run every 15 minutes
schedule: "*/15 * * * *"
# Configuration for postgresql subchart
# Not recommended for production
postgresql:
enabled: true
postgresqlPassword: postgres
postgresqlUsername: postgres
# Config settings to go into the mounted airflow.cfg
#
# Please note that these values are passed through the `tpl` function, so are
# all subject to being rendered as go templates. If you need to include a
# literal `{{` in a value, it must be expressed like this:
#
# a: '{{ "{{ not a template }}" }}'
#
# yamllint disable rule:line-length
config:
core:
dags_folder: '{{ include "airflow_dags" . }}'
load_examples: 'False'
executor: '{{ .Values.executor }}'
# For Airflow 1.10, backward compatibility
colored_console_log: 'True'
remote_logging: '{{- ternary "True" "False" .Values.elasticsearch.enabled }}'
# Authentication backend used for the experimental API
api:
auth_backend: airflow.api.auth.backend.deny_all
logging:
remote_logging: '{{- ternary "True" "False" .Values.elasticsearch.enabled }}'
colored_console_log: 'True'
logging_level: INFO
metrics:
statsd_on: '{{ ternary "True" "False" .Values.statsd.enabled }}'
statsd_port: 9125
statsd_prefix: airflow
statsd_host: '{{ printf "%s-statsd" .Release.Name }}'
webserver:
enable_proxy_fix: 'True'
expose_config: 'True'
rbac: 'True'
celery:
default_queue: celery
scheduler:
scheduler_heartbeat_sec: 5
# For Airflow 1.10, backward compatibility
statsd_on: '{{ ternary "True" "False" .Values.statsd.enabled }}'
statsd_port: 9125
statsd_prefix: airflow
statsd_host: '{{ printf "%s-statsd" .Release.Name }}'
# Restart Scheduler every 41460 seconds (11 hours 31 minutes)
# The odd time is chosen so it is not always restarting on the same "hour" boundary
run_duration: 41460
elasticsearch:
json_format: 'True'
log_id_template: "{dag_id}_{task_id}_{execution_date}_{try_number}"
elasticsearch_configs:
max_retries: 3
timeout: 30
retry_timeout: 'True'
kerberos:
keytab: '{{ .Values.kerberos.keytabPath }}'
reinit_frequency: '{{ .Values.kerberos.reinitFrequency }}'
principal: '{{ .Values.kerberos.principal }}'
ccache: '{{ .Values.kerberos.ccacheMountPath }}/{{ .Values.kerberos.ccacheFileName }}'
kubernetes:
namespace: '{{ .Release.Namespace }}'
airflow_configmap: '{{ include "airflow_config" . }}'
airflow_local_settings_configmap: '{{ include "airflow_config" . }}'
pod_template_file: '{{ include "airflow_pod_template_file" . }}/pod_template_file.yaml'
worker_container_repository: '{{ .Values.images.airflow.repository | default .Values.defaultAirflowRepository }}'
worker_container_tag: '{{ .Values.images.airflow.tag | default .Values.defaultAirflowTag }}'
delete_worker_pods: 'False'
multi_namespace_mode: '{{ if .Values.multiNamespaceMode }}True{{ else }}False{{ end }}'
# yamllint enable rule:line-length
multiNamespaceMode: false
podTemplate:
# Git sync
dags:
persistence:
# Enable persistent volume for storing dags
enabled: false
# Volume size for dags
size: 1Gi
# If using a custom storageClass, pass name here
storageClassName: gp2
# access mode of the persistent volume
accessMode: ReadWriteMany
## the name of an existing PVC to use
existingClaim: "airflow-dags"
gitSync:
enabled: true
repo: git@github.com:Tikna-inc/airflow.git
branch: main
rev: HEAD
root: "/git"
dest: "repo"
depth: 1
maxFailures: 0
subPath: ""
sshKeySecret: airflow-ssh-secret
wait: 60
containerName: git-sync
uid: 65533
and this is the dag with its tasks
from datetime import timedelta
import requests
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.utils.dates import days_ago
logging.getLogger().setLevel(level=logging.INFO)
default_args = {
'owner': 'airflow',
'depends_on_past': False,
'email': ['airflow@example.com'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),
}
def get_active_customers():
requests.get("localhost:8080")
dag = DAG(
'bash',
default_args=default_args,
description='A simple test DAG',
schedule_interval='*/2 * * * *',
start_date=days_ago(1),
tags=['Test'],
is_paused_upon_creation=False,
catchup=False
)
t1 = BashOperator(
task_id='print_date',
bash_command='mkdir ./itsMe',
dag=dag
)
t1
This is airflow.cfg file
[api]
auth_backend = airflow.api.auth.backend.deny_all
[celery]
default_queue = celery
[core]
colored_console_log = True
dags_folder = /opt/airflow/dags/repo/
executor = KubernetesExecutor
load_examples = False
remote_logging = False
[elasticsearch]
json_format = True
log_id_template = {dag_id}_{task_id}_{execution_date}_{try_number}
[elasticsearch_configs]
max_retries = 3
retry_timeout = True
timeout = 30
[kerberos]
ccache = /var/kerberos-ccache/cache
keytab = /etc/airflow.keytab
principal = airflow@FOO.COM
reinit_frequency = 3600
[kubernetes]
airflow_configmap = airflow-airflow-config
airflow_local_settings_configmap = airflow-airflow-config
dags_in_image = False
delete_worker_pods = False
multi_namespace_mode = False
namespace = airflow
pod_template_file = /opt/airflow/pod_templates/pod_template_file.yaml
worker_container_repository = apache/airflow
worker_container_tag = 2.0.0
[logging]
colored_console_log = True
logging_level = INFO
remote_logging = False
[metrics]
statsd_host = airflow-statsd
statsd_on = True
statsd_port = 9125
statsd_prefix = airflow
[scheduler]
run_duration = 41460
scheduler_heartbeat_sec = 5
statsd_host = airflow-statsd
statsd_on = True
statsd_port = 9125
statsd_prefix = airflow
[webserver]
enable_proxy_fix = True
expose_config = True
This is the pod yaml file for the new tasks
apiVersion: v1
kind: Pod
metadata:
annotations:
dag_id: bash2
execution_date: "2021-01-14T20:16:00+00:00"
kubernetes.io/psp: eks.privileged
task_id: create_dir
try_number: "2"
labels:
airflow-worker: "38"
airflow_version: 2.0.0
dag_id: bash2
execution_date: 2021-01-14T20_16_00_plus_00_00
kubernetes_executor: "True"
task_id: create_dir
try_number: "2"
name: sss3
namespace: airflow
spec:
containers:
- args:
- airflow
- tasks
- run
- bash2
- create_dir
- "2021-01-14T20:16:00+00:00"
- --local
- --pool
- default_pool
- --subdir
- /opt/airflow/dags/repo/bash.py
env:
- name: AIRFLOW__CORE__EXECUTOR
value: LocalExecutor
- name: AIRFLOW__CORE__FERNET_KEY
valueFrom:
secretKeyRef:
key: fernet-key
name: airflow-fernet-key
- name: AIRFLOW__CORE__SQL_ALCHEMY_CONN
valueFrom:
secretKeyRef:
key: connection
name: airflow-airflow-metadata
- name: AIRFLOW_CONN_AIRFLOW_DB
valueFrom:
secretKeyRef:
key: connection
name: airflow-airflow-metadata
- name: AIRFLOW_IS_K8S_EXECUTOR_POD
value: "True"
image: apache/airflow:2.0.0
imagePullPolicy: IfNotPresent
name: base
resources: { }
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:
- mountPath: /opt/airflow/logs
name: airflow-logs
- mountPath: /opt/airflow/airflow.cfg
name: config
readOnly: true
subPath: airflow.cfg
- mountPath: /etc/git-secret/ssh
name: git-sync-ssh-key
subPath: ssh
- mountPath: /opt/airflow/dags
name: dags
readOnly: true
- mountPath: /var/run/secrets/kubernetes.io/serviceaccount
name: airflow-worker-token-7sdtr
readOnly: true
dnsPolicy: ClusterFirst
enableServiceLinks: true
initContainers:
- env:
- name: GIT_SSH_KEY_FILE
value: /etc/git-secret/ssh
- name: GIT_SYNC_SSH
value: "true"
- name: GIT_KNOWN_HOSTS
value: "false"
- name: GIT_SYNC_REV
value: HEAD
- name: GIT_SYNC_BRANCH
value: main
- name: GIT_SYNC_REPO
value: git@github.com:Tikna-inc/airflow.git
- name: GIT_SYNC_DEPTH
value: "1"
- name: GIT_SYNC_ROOT
value: /git
- name: GIT_SYNC_DEST
value: repo
- name: GIT_SYNC_ADD_USER
value: "true"
- name: GIT_SYNC_WAIT
value: "60"
- name: GIT_SYNC_MAX_SYNC_FAILURES
value: "0"
- name: GIT_SYNC_ONE_TIME
value: "true"
image: k8s.gcr.io/git-sync:v3.1.6
imagePullPolicy: IfNotPresent
name: git-sync
resources: { }
securityContext:
runAsUser: 65533
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:
- mountPath: /git
name: dags
- mountPath: /etc/git-secret/ssh
name: git-sync-ssh-key
readOnly: true
subPath: gitSshKey
- mountPath: /var/run/secrets/kubernetes.io/serviceaccount
name: airflow-worker-token-7sdtr
readOnly: true
nodeName: ip-172-31-41-37.eu-south-1.compute.internal
priority: 0
restartPolicy: Never
schedulerName: default-scheduler
securityContext:
runAsUser: 50000
serviceAccount: airflow-worker
serviceAccountName: airflow-worker
terminationGracePeriodSeconds: 30
tolerations:
- effect: NoExecute
key: node.kubernetes.io/not-ready
operator: Exists
tolerationSeconds: 300
- effect: NoExecute
key: node.kubernetes.io/unreachable
operator: Exists
tolerationSeconds: 300
volumes:
- emptyDir: { }
name: dags
- name: git-sync-ssh-key
secret:
defaultMode: 288
secretName: airflow-ssh-secret
- emptyDir: { }
name: airflow-logs
- configMap:
defaultMode: 420
name: airflow-airflow-config
name: config
- name: airflow-worker-token-7sdtr
secret:
defaultMode: 420
secretName: airflow-worker-token-7sdtr
-----------------------Important----------------------------
Debugging
for debugging purpose I have changed the pod args rather than running the task, I ran it with
spec:
containers:
- args:
- airflow
- webserver
and tried to look for the Dags , and found None. It seems like gitSync is not working with the pods triggered by kubernetesExecutor.
Any help please ???
Issue Analytics
- State:
- Created 3 years ago
- Reactions:2
- Comments:22 (5 by maintainers)
Top Results From Across the Web
airflow error "dag_id could not be found" when running airflow ...
and tried to look for the Dags , and found None. It seems like gitSync is not working with the pods triggered by...
Read more >Airflow : dag_id not not find on Kubernetes Executor worker pod!
I am new to Airflow and am thus facing some issues. I am working on Airflow, and have successfully deployed it on Celery...
Read more >Why we must choose Kubernetes executor for Airflow
1 — Control over resources (memory, CPU) on the Kubernetes cluster. 2 — Many developers working on different projects and have different ...
Read more >How to Set up Airflow on Kubernetes? - Bhavani Ravi
Airflow lets you define workflow as a directed acyclic graph(DAG) defined in a Python file. The most famous usecase of airflow is data/machine...
Read more >Using Airflow With Kubernetes at BenevolentAI
Using Kubernetes we run many sophisticated workflows for data ... The KubernetesExecutor on the other hand does not require you to stand up ......
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
It turns out that as of 2.0.0, users are required to provide a
pod_template_file
https://airflow.apache.org/docs/apache-airflow/stable/executor/kubernetes.html. This template replaces the functionality lost by the removal of the config values I mentioned above. I haven’t tested that this solves my issue yet, but I suppose it should, as I can manually add the proper volume mounts to the templateI had to create a pod template file :
dev-airflow-worker.yaml
And in the helm-chart’s
values.yaml
https://artifacthub.io/packages/helm/bitnami/airflowhope it helps