Use AutoGluon in Kaggle Kernels
See original GitHub issueA majority of recent Kaggle competitions require to submit via notebooks.
We could use !pip install autogluon
, but got the a bunch of errors, even just importing the tabular task. For example
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
<ipython-input-17-6f7d1b4fed2f> in <module>
----> 1 from autogluon import TabularPrediction as task
/opt/conda/lib/python3.7/site-packages/autogluon/__init__.py in <module>
15 logger.setLevel(logging.ERROR)
16
---> 17 from .utils.try_import import *
18 try_import_mxnet()
19
/opt/conda/lib/python3.7/site-packages/autogluon/utils/__init__.py in <module>
18 from .util_decorator import classproperty
19 from .custom_process import CustomProcess
---> 20 from .openml_download import *
21
/opt/conda/lib/python3.7/site-packages/autogluon/utils/openml_download.py in <module>
1 import os
2 import numpy as np
----> 3 from sklearn.impute import SimpleImputer
4 from sklearn.model_selection import train_test_split
5
/opt/conda/lib/python3.7/site-packages/sklearn/impute/__init__.py in <module>
2
3 from ._base import MissingIndicator, SimpleImputer
----> 4 from ._knn import KNNImputer
5
6 __all__ = [
/opt/conda/lib/python3.7/site-packages/sklearn/impute/_knn.py in <module>
7 from ._base import _BaseImputer
8 from ..utils.validation import FLOAT_DTYPES
----> 9 from ..metrics import pairwise_distances_chunked
10 from ..metrics.pairwise import _NAN_METRICS
11 from ..neighbors._base import _get_weights
/opt/conda/lib/python3.7/site-packages/sklearn/metrics/__init__.py in <module>
5
6
----> 7 from ._ranking import auc
8 from ._ranking import average_precision_score
9 from ._ranking import coverage_error
/opt/conda/lib/python3.7/site-packages/sklearn/metrics/_ranking.py in <module>
33 from ..utils.sparsefuncs import count_nonzero
34 from ..exceptions import UndefinedMetricWarning
---> 35 from ..preprocessing import label_binarize
36 from ..preprocessing._label import _encode
37
/opt/conda/lib/python3.7/site-packages/sklearn/preprocessing/__init__.py in <module>
6 from ._function_transformer import FunctionTransformer
7
----> 8 from ._data import Binarizer
9 from ._data import KernelCenterer
10 from ._data import MinMaxScaler
/opt/conda/lib/python3.7/site-packages/sklearn/preprocessing/_data.py in <module>
34 from ._csr_polynomial_expansion import _csr_polynomial_expansion
35
---> 36 from ._encoders import OneHotEncoder
37
38 BOUNDS_THRESHOLD = 1e-7
/opt/conda/lib/python3.7/site-packages/sklearn/preprocessing/_encoders.py in <module>
8 from ..base import BaseEstimator, TransformerMixin
9 from ..utils import check_array
---> 10 from ..utils.fixes import _argmax
11 from ..utils.validation import check_is_fitted
12
ImportError: cannot import name '_argmax' from 'sklearn.utils.fixes' (/opt/conda/lib/python3.7/site-packages/sklearn/utils/fixes.py)
Several competitions don’t allow use Internet, which means we cannot pip install
. Instead, we should submit a PR to add autogluon at https://github.com/Kaggle/docker-python/blob/master/Dockerfile#L129 and
Issue Analytics
- State:
- Created 3 years ago
- Comments:15 (6 by maintainers)
Top Results From Across the Web
Use AutoGluon in Kaggle Kernels · Issue #596 - GitHub
I was able to use kaggle kernels with multiple older versions of autogluon, c.f. https://www.kaggle.com/jonaswm/covid-ag
Read more >Using feature engineering with AutoGluon - Kaggle
Explore and run machine learning code with Kaggle Notebooks | Using data from Titanic - Machine Learning from ... Using feature engineering with...
Read more >How to use AutoGluon for Kaggle competitions
We first outline the general steps to use AutoGluon in Kaggle contests. Here, we assume the competition involves tabular data which are stored...
Read more >Kaggle Kernels that use AutoML and Intel® Extension for ...
AutoML MultiClass Classification (Gradient Boosting, Random Forest, kNN) using AutoGluon with Intel® Extension for Scikit-learn*. Data: [TPS Jun 2021] Synthetic ...
Read more >AutoGluon-Tabular - Amazon SageMaker - AWS Documentation
You can use AutoGluon-Tabular as an Amazon SageMaker built-in algorithm. ... available in the InstanceType ) must be able to hold the training...
Read more >
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Awesome! Thanks for giving an example.
One note (and unfortunately I expect this is going to happen a lot, so is the way of optional dependencies in python…):
!pip install autogluon.tabular
only installs a minimal install of Tabular, with most of the models missing.You’ll want to do
!pip install autogluon.tabular[all]
to get all the models.Closing as it appears there are no issues with installing AutoGluon on Kaggle as of v0.1 and v0.2.