question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

OutputFileDatasetConfig results in error 'Exception: No temp file found.'

See original GitHub issue
  • Package Name: azureml.data.output_dataset_config.OutputFileDatasetConfig
  • Package Version: azure-batch 9.0.0 azure-cli 2.16.0 azure-cli-core 2.16.0 azure-cli-telemetry 1.0.6 azure-common 1.1.26 azure-core 1.9.0 azure-cosmos 3.2.0 azure-datalake-store 0.0.51 azure-functions-devops-build 0.0.22 azure-graphrbac 0.61.1 azure-identity 1.4.1 azure-keyvault 1.1.0 azure-keyvault-administration 4.0.0b2 azure-loganalytics 0.1.0 azure-mgmt-advisor 2.0.1 azure-mgmt-apimanagement 0.2.0 azure-mgmt-appconfiguration 0.6.0 azure-mgmt-applicationinsights 0.1.1 azure-mgmt-authorization 0.61.0 azure-mgmt-batch 9.0.0 azure-mgmt-batchai 2.0.0 azure-mgmt-billing 1.0.0 azure-mgmt-botservice 0.2.0 azure-mgmt-cdn 5.2.0 azure-mgmt-cognitiveservices 6.3.0 azure-mgmt-compute 14.0.0 azure-mgmt-consumption 2.0.0 azure-mgmt-containerinstance 1.5.0 azure-mgmt-containerregistry 2.8.0 azure-mgmt-containerservice 9.4.0 azure-mgmt-core 1.2.1 azure-mgmt-cosmosdb 1.0.0 azure-mgmt-datalake-analytics 0.2.1 azure-mgmt-datalake-nspkg 3.0.1 azure-mgmt-datalake-store 0.5.0 azure-mgmt-datamigration 0.1.0 azure-mgmt-deploymentmanager 0.2.0 azure-mgmt-devtestlabs 4.0.0 azure-mgmt-dns 2.1.0 azure-mgmt-eventgrid 3.0.0rc7 azure-mgmt-eventhub 4.1.0 azure-mgmt-hdinsight 2.0.0 azure-mgmt-imagebuilder 0.4.0 azure-mgmt-iotcentral 3.0.0 azure-mgmt-iothub 0.12.0 azure-mgmt-iothubprovisioningservices 0.2.0 azure-mgmt-keyvault 2.2.0 azure-mgmt-kusto 0.3.0 azure-mgmt-loganalytics 0.7.0 azure-mgmt-managedservices 1.0.0 azure-mgmt-managementgroups 0.2.0 azure-mgmt-maps 0.1.0 azure-mgmt-marketplaceordering 0.2.1 azure-mgmt-media 2.2.0 azure-mgmt-monitor 0.11.0 azure-mgmt-msi 0.2.0 azure-mgmt-netapp 0.14.0 azure-mgmt-network 13.0.0 azure-mgmt-nspkg 3.0.2 azure-mgmt-policyinsights 0.5.0 azure-mgmt-privatedns 0.1.0 azure-mgmt-rdbms 3.1.0rc1 azure-mgmt-recoveryservices 0.4.0 azure-mgmt-recoveryservicesbackup 0.6.0 azure-mgmt-redhatopenshift 0.1.0 azure-mgmt-redis 7.0.0rc2 azure-mgmt-relay 0.1.0 azure-mgmt-reservations 0.6.0 azure-mgmt-resource 10.3.0 azure-mgmt-search 2.1.0 azure-mgmt-security 0.4.1 azure-mgmt-servicebus 0.6.0 azure-mgmt-servicefabric 0.5.0 azure-mgmt-signalr 0.4.0 azure-mgmt-sql 0.21.0 azure-mgmt-sqlvirtualmachine 0.5.0 azure-mgmt-storage 11.2.0 azure-mgmt-synapse 0.5.0 azure-mgmt-trafficmanager 0.51.0 azure-mgmt-web 0.48.0 azure-multiapi-storage 0.5.2 azure-nspkg 3.0.2 azure-storage-blob 12.6.0 azure-storage-common 1.4.2 azure-storage-queue 12.1.4 azure-synapse-accesscontrol 0.2.0 azure-synapse-artifacts 0.3.0 azure-synapse-spark 0.2.0 azureml-accel-models 1.19.0 azureml-automl-core 1.19.0 azureml-automl-runtime 1.19.0 azureml-cli-common 1.19.0 azureml-contrib-dataset 1.19.0 azureml-contrib-fairness 1.19.0 azureml-contrib-gbdt 1.19.0 azureml-contrib-interpret 1.19.0 azureml-contrib-notebook 1.19.0 azureml-contrib-pipeline-steps 1.19.0 azureml-contrib-reinforcementlearning 1.19.0 azureml-contrib-server 1.19.0 azureml-contrib-services 1.19.0 azureml-core 1.19.0 azureml-datadrift 1.19.0 azureml-dataprep 2.6.1 azureml-dataprep-native 26.0.0 azureml-dataprep-rslex 1.4.0 azureml-dataset-runtime 1.19.0 azureml-defaults 1.19.0 azureml-explain-model 1.19.0 azureml-interpret 1.19.0 azureml-mlflow 1.19.0 azureml-model-management-sdk 1.0.1b6.post1 azureml-opendatasets 1.19.0 azureml-pipeline 1.19.0 azureml-pipeline-core 1.19.0 azureml-pipeline-steps 1.19.0 azureml-samples 0+unknown azureml-sdk 1.19.0 azureml-telemetry 1.19.0 azureml-tensorboard 1.19.0 azureml-train 1.19.0 azureml-train-automl 1.19.0 azureml-train-automl-client 1.19.0 azureml-train-automl-runtime 1.19.0 azureml-train-core 1.19.0 azureml-train-restclients-hyperdrive 1.19.0 azureml-widgets 1.19.0
  • Operating System: Ubuntu (Default Azure ML Studio Env)
  • Python Version: 3.6.9

Describe the bug When using OutputFileDatasetConfig, sometimes the job fails with error

Exception: No temp file found.

To Reproduce Steps to reproduce the behavior:

  1. Create a pipeline using the Python SDK and ParallelRunStep
  2. Use OutputFileDatasetConfig for output
  3. Run Pipeline

Expected behavior For the pipeline to run without error.

Screenshots If applicable, add screenshots to help explain your problem. N/A.

Additional context Detailed StackOverflow question I posted when I was having issues with OutputFileDatasetConfig: https://stackoverflow.com/questions/65240603/azure-ml-studio-ml-pipeline-exception-no-temp-file-found

Issue Analytics

  • State:closed
  • Created 3 years ago
  • Comments:6 (1 by maintainers)

github_iconTop GitHub Comments

2reactions
GuXiaoMingcommented, Apr 8, 2021

Hi @yeamusic21, that’s a known issue already fixed in all regions since 1/17/2021. And the original context in stackoverflow shows that all cases occurred in 2020. I’ll close the issue since it’s fixed and no more occurrence now. Thanks for raising the problem!

1reaction
ChunyuMSFTcommented, Feb 18, 2021

Hi @yeamusic21 , thank you for your feedback, in current version, OutputDatasetConfig can’t work with ParallelRunStep, we are working on fixing it.

Read more comments on GitHub >

github_iconTop Results From Across the Web

Azure ML Studio ML Pipeline - Exception: No temp file found
I think I might have answered my own question. I think the issue was with OutputFileDatasetConfig. Once I switched back to using
Read more >
Troubleshooting the ParallelRunStep - Azure Machine Learning
Tips for how to troubleshoot when you get errors using the ParallelRunStep in machine learning pipelines.
Read more >
3 Ways to Pass Data Between Azure ML Pipeline Steps
1. Using File and Tabular Datasets as Pipeline Inputs ... Datasets are a way to explore, transform, and manage data in Azure Machine...
Read more >
Beyond the Basics with Azure ML: ML Pipelines - 36 Chambers
There might be a data engineer working on data cleanup, a data scientist training different models and evaluating results, and a devops ...
Read more >
Working and unit testing with temporary files in Java
Temporary files are frequently used in testing and in production. ... the error conditions that you might want to simulate in test suites....
Read more >

github_iconTop Related Medium Post

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found