question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

Unexpected Error when testing Bambi package

See original GitHub issue

I’m working on a laptop with Windows 10 and using Anaconda 64-bit. I have created an environment for working with Pymc3 and bambi. I have been able to test Pymc3 and it is working for an Hierarchical Linear Regression model. For bambi I was testing the example described at this link (growth curves of Pigs example) [https://bambinos.github.io/bambi/master/notebooks/multi-level_regression.html]. I run into an error I had not seen with bambi before (actually from the output this looks like it is occurring at Theano, but I’m not a programmer or a developer).

Here is my environment and the complete traceback of the error

# packages in environment at C:\ProgramData\Anaconda3\envs\pm3env:
#
# Name                    Version                   Build  Channel
argon2-cffi               20.1.0           py37hcc03f2d_2    conda-forge
arviz                     0.11.1                   pypi_0    pypi
async_generator           1.10                       py_0    conda-forge
attrs                     21.2.0             pyhd8ed1ab_0    conda-forge
backcall                  0.2.0              pyh9f0ad1d_0    conda-forge
backports                 1.0                        py_2    conda-forge
backports.functools_lru_cache 1.6.4              pyhd8ed1ab_0    conda-forge
bambi                     0.5.0                    pypi_0    pypi
blas                      1.0                         mkl
bleach                    4.0.0              pyhd8ed1ab_0    conda-forge
ca-certificates           2021.5.30            h5b45459_0    conda-forge
cached-property           1.5.2                    pypi_0    pypi
cachetools                4.2.2                    pypi_0    pypi
cairo                     1.16.0            hb19e0ff_1008    conda-forge
certifi                   2021.5.30        py37h03978a9_0    conda-forge
cffi                      1.14.6           py37hd8e9650_0    conda-forge
cftime                    1.5.0                    pypi_0    pypi
colorama                  0.4.4              pyh9f0ad1d_0    conda-forge
cycler                    0.10.0                     py_2    conda-forge
decorator                 5.0.9              pyhd8ed1ab_0    conda-forge
defusedxml                0.7.1              pyhd8ed1ab_0    conda-forge
dill                      0.3.4                    pypi_0    pypi
entrypoints               0.3             pyhd8ed1ab_1003    conda-forge
et-xmlfile                1.1.0                    pypi_0    pypi
expat                     2.4.1                h39d44d4_0    conda-forge
fastprogress              1.0.0                    pypi_0    pypi
filelock                  3.0.12                   pypi_0    pypi
font-ttf-dejavu-sans-mono 2.37                 hab24e00_0    conda-forge
font-ttf-inconsolata      3.000                h77eed37_0    conda-forge
font-ttf-source-code-pro  2.038                h77eed37_0    conda-forge
font-ttf-ubuntu           0.83                 hab24e00_0    conda-forge
fontconfig                2.13.1            h1989441_1005    conda-forge
fonts-conda-ecosystem     1                             0    conda-forge
fonts-conda-forge         1                             0    conda-forge
formulae                  0.1.3                    pypi_0    pypi
freetype                  2.10.4               h546665d_1    conda-forge
fribidi                   1.0.10               h8d14728_0    conda-forge
getopt-win32              0.1                  h8ffe710_0    conda-forge
gettext                   0.19.8.1          h1a89ca6_1005    conda-forge
graphite2                 1.3.13                     1000    conda-forge
graphviz                  2.48.0               hefbd956_0    conda-forge
gts                       0.7.6                h7c369d9_2    conda-forge
h5py                      3.1.0                    pypi_0    pypi
harfbuzz                  2.8.2                hc601d6f_0    conda-forge
icc_rt                    2019.0.0             h0cc432a_1
icu                       68.1                 h0e60522_0    conda-forge
importlib-metadata        2.1.1                    pypi_0    pypi
intel-openmp              2021.3.0          h57928b3_3372    conda-forge
ipykernel                 5.5.5            py37h7813e69_0    conda-forge
ipython                   7.26.0           py37h4038f58_0    conda-forge
ipython_genutils          0.2.0                      py_1    conda-forge
ipywidgets                7.6.3              pyhd3eb1b0_1
jbig                      2.1               h8d14728_2003    conda-forge
jedi                      0.18.0           py37h03978a9_2    conda-forge
jinja2                    3.0.1              pyhd8ed1ab_0    conda-forge
jpeg                      9d                   h8ffe710_0    conda-forge
jsonschema                3.2.0              pyhd8ed1ab_3    conda-forge
jupyter                   1.0.0                    py37_7
jupyter_client            6.1.12             pyhd8ed1ab_0    conda-forge
jupyter_console           6.4.0              pyhd8ed1ab_0    conda-forge
jupyter_core              4.7.1            py37h03978a9_0    conda-forge
jupyterlab_pygments       0.1.2              pyh9f0ad1d_0    conda-forge
jupyterlab_widgets        1.0.0              pyhd8ed1ab_1    conda-forge
kiwisolver                1.3.1            py37h8c56517_1    conda-forge
lcms2                     2.12                 h2a16943_0    conda-forge
lerc                      2.2.1                h0e60522_0    conda-forge
libclang                  11.1.0          default_h5c34c98_1    conda-forge
libdeflate                1.7                  h8ffe710_5    conda-forge
libffi                    3.3                  h0e60522_2    conda-forge
libgd                     2.3.2                h138e682_0    conda-forge
libglib                   2.68.3               h1e62bf3_0    conda-forge
libiconv                  1.16                 he774522_0    conda-forge
libpng                    1.6.37               h1d00b33_2    conda-forge
libpython                 2.1                      py37_0
libsodium                 1.0.18               h8d14728_1    conda-forge
libtiff                   4.3.0                h0c97f57_1    conda-forge
libwebp                   1.2.0                h57928b3_0    conda-forge
libwebp-base              1.2.0                h8ffe710_2    conda-forge
libxcb                    1.13              hcd874cb_1003    conda-forge
libxml2                   2.9.12               hf5bbc77_0    conda-forge
llvmlite                  0.36.0           py37habb0c8c_0    conda-forge
lz4-c                     1.9.3                h8ffe710_1    conda-forge
m2w64-gcc-libgfortran     5.3.0                         6    conda-forge
m2w64-gcc-libs            5.3.0                         7    conda-forge
m2w64-gcc-libs-core       5.3.0                         7    conda-forge
m2w64-gmp                 6.1.0                         2    conda-forge
m2w64-libwinpthread-git   5.0.0.4634.697f757               2    conda-forge
markupsafe                2.0.1            py37hcc03f2d_0    conda-forge
matplotlib                3.3.2                haa95532_0
matplotlib-base           3.3.2            py37h3379fd5_1    conda-forge
matplotlib-inline         0.1.2              pyhd8ed1ab_2    conda-forge
mistune                   0.8.4           py37hcc03f2d_1004    conda-forge
mkl                       2020.4             hb70f87d_311    conda-forge
mkl-service               2.3.0            py37h196d8e1_0
mkl_fft                   1.3.0            py37hda49f71_1    conda-forge
mkl_random                1.2.0            py37h414f9d2_1    conda-forge
mpmath                    1.2.1              pyhd8ed1ab_0    conda-forge
msys2-conda-epoch         20160418                      1    conda-forge
nbclient                  0.5.3              pyhd8ed1ab_0    conda-forge
nbconvert                 6.1.0            py37h03978a9_0    conda-forge
nbformat                  5.1.3              pyhd8ed1ab_0    conda-forge
nest-asyncio              1.5.1              pyhd8ed1ab_0    conda-forge
netcdf4                   1.5.7                    pypi_0    pypi
notebook                  6.4.0              pyha770c72_0    conda-forge
numba                     0.53.1           py37h4e635f9_0    conda-forge
numpy                     1.19.2           py37hadc3359_0
numpy-base                1.19.2           py37ha3acd2a_0
olefile                   0.46               pyh9f0ad1d_1    conda-forge
openjpeg                  2.4.0                hb211442_1    conda-forge
openpyxl                  3.0.7                    pypi_0    pypi
openssl                   1.1.1k               h8ffe710_0    conda-forge
packaging                 21.0               pyhd8ed1ab_0    conda-forge
pandas                    1.2.1            py37hf11a4ad_0
pandoc                    2.14.1               h8ffe710_0    conda-forge
pandocfilters             1.4.2                      py_1    conda-forge
pango                     1.48.7               hd84fcdd_0    conda-forge
parso                     0.8.2              pyhd8ed1ab_0    conda-forge
patsy                     0.5.1                    pypi_0    pypi
pcre                      8.45                 h0e60522_0    conda-forge
pickleshare               0.7.5                   py_1003    conda-forge
pillow                    8.3.1            py37hd7d9ad0_0    conda-forge
pip                       20.3.3           py37haa95532_0
pixman                    0.40.0               h8ffe710_0    conda-forge
prometheus_client         0.11.0             pyhd8ed1ab_0    conda-forge
prompt-toolkit            3.0.19             pyha770c72_0    conda-forge
prompt_toolkit            3.0.19               hd8ed1ab_0    conda-forge
pthread-stubs             0.4               hcd874cb_1001    conda-forge
pycparser                 2.20               pyh9f0ad1d_2    conda-forge
pygments                  2.9.0              pyhd8ed1ab_0    conda-forge
pymc3                     3.11.2                   pypi_0    pypi
pyparsing                 2.4.7              pyh9f0ad1d_0    conda-forge
pyqt                      5.12.3           py37h03978a9_7    conda-forge
pyqt-impl                 5.12.3           py37hf2a7229_7    conda-forge
pyqt5-sip                 4.19.18          py37hf2a7229_7    conda-forge
pyqtchart                 5.12             py37hf2a7229_7    conda-forge
pyqtwebengine             5.12.1           py37hf2a7229_7    conda-forge
pyrsistent                0.17.3           py37hcc03f2d_2    conda-forge
python                    3.7.9                h60c2a47_0
python-dateutil           2.8.2              pyhd8ed1ab_0    conda-forge
python-graphviz           0.16               pyh243d235_2    conda-forge
python_abi                3.7                     2_cp37m    conda-forge
pytz                      2021.1             pyhd8ed1ab_0    conda-forge
pywin32                   300              py37hcc03f2d_0    conda-forge
pywinpty                  1.1.3            py37h7f67f24_0    conda-forge
pyzmq                     22.2.0           py37hcce574b_0    conda-forge
qt                        5.12.9               h5909a2a_4    conda-forge
qtconsole                 5.1.1              pyhd8ed1ab_0    conda-forge
qtpy                      1.9.0                      py_0    conda-forge
scipy                     1.7.1                    pypi_0    pypi
semver                    2.13.0                   pypi_0    pypi
send2trash                1.7.1              pyhd8ed1ab_0    conda-forge
setuptools                49.6.0           py37h03978a9_3    conda-forge
six                       1.16.0             pyh6c4a22f_0    conda-forge
sqlite                    3.36.0               h8ffe710_0    conda-forge
statsmodels               0.12.2                   pypi_0    pypi
sympy                     1.7.1            py37h03978a9_1    conda-forge
terminado                 0.10.1           py37h03978a9_0    conda-forge
testpath                  0.5.0              pyhd8ed1ab_0    conda-forge
theano-pymc               1.1.2                    pypi_0    pypi
tk                        8.6.10               h8ffe710_1    conda-forge
tornado                   6.1              py37hcc03f2d_1    conda-forge
traitlets                 5.0.5                      py_0    conda-forge
typing                    3.7.4.3                  pypi_0    pypi
typing_extensions         3.10.0.0           pyha770c72_0    conda-forge
ucrt                      10.0.20348.0         h57928b3_0    conda-forge
vc                        14.2                 hb210afc_5    conda-forge
vs2015_runtime            14.29.30037          h902a5da_5    conda-forge
watermark                 2.2.0                    pypi_0    pypi
wcwidth                   0.2.5              pyh9f0ad1d_2    conda-forge
webencodings              0.5.1                      py_1    conda-forge
wheel                     0.36.2             pyhd3deb0d_0    conda-forge
widgetsnbextension        3.5.1            py37h03978a9_4    conda-forge
wincertstore              0.2             py37h03978a9_1006    conda-forge
winpty                    0.4.3                         4    conda-forge
xarray                    0.16.2                   pypi_0    pypi
xorg-kbproto              1.0.7             hcd874cb_1002    conda-forge
xorg-libice               1.0.10               hcd874cb_0    conda-forge
xorg-libsm                1.2.3             hcd874cb_1000    conda-forge
xorg-libx11               1.7.2                hcd874cb_0    conda-forge
xorg-libxau               1.0.9                hcd874cb_0    conda-forge
xorg-libxdmcp             1.1.3                hcd874cb_0    conda-forge
xorg-libxext              1.3.4                hcd874cb_1    conda-forge
xorg-libxpm               3.5.13               hcd874cb_0    conda-forge
xorg-libxt                1.2.1                hcd874cb_2    conda-forge
xorg-xextproto            7.3.0             hcd874cb_1002    conda-forge
xorg-xproto               7.0.31            hcd874cb_1007    conda-forge
xz                        5.2.5                h62dcd97_1    conda-forge
zeromq                    4.3.4                h0e60522_0    conda-forge
zipp                      3.5.0              pyhd8ed1ab_0    conda-forge
zlib                      1.2.11            h62dcd97_1010    conda-forge
zstd                      1.5.0                h6255e5f_0    conda-forge

Model I tried to run is:

model = bmb.Model("Weight ~ Time + (Time|Pig)", data)
results = model.fit()

And the error I get is:

---------------------------------------------------------------------------
Exception                                 Traceback (most recent call last)
<ipython-input-11-99071b9bde96> in <module>
      1 model = bmb.Model("Weight ~ Time + (Time|Pig)", data)
----> 2 results = model.fit()

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\bambi\models.py in fit(self, omit_offsets, backend, **kwargs)
    213             )
    214 
--> 215         return self.backend.run(omit_offsets=omit_offsets, **kwargs)
    216 
    217     def build(self, backend="pymc"):

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\bambi\backends\pymc.py in run(self, start, method, init, n_init, omit_offsets, **kwargs)
    139                     n_init=n_init,
    140                     return_inferencedata=True,
--> 141                     **kwargs,
    142                 )
    143 

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\pymc3\sampling.py in sample(draws, step, init, n_init, start, trace, chain_idx, chains, cores, tune, progressbar, model, random_seed, discard_tuned_samples, compute_convergence_checks, callback, jitter_max_retries, return_inferencedata, idata_kwargs, mp_ctx, pickle_backend, **kwargs)
    502                 progressbar=progressbar,
    503                 jitter_max_retries=jitter_max_retries,
--> 504                 **kwargs,
    505             )
    506             if start is None:

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\pymc3\sampling.py in init_nuts(init, chains, n_init, model, random_seed, progressbar, jitter_max_retries, **kwargs)
   2185         raise ValueError(f"Unknown initializer: {init}.")
   2186 
-> 2187     step = pm.NUTS(potential=potential, model=model, **kwargs)
   2188 
   2189     return start, step

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\pymc3\step_methods\hmc\nuts.py in __init__(self, vars, max_treedepth, early_max_treedepth, **kwargs)
    166         `pm.sample` to the desired number of tuning steps.
    167         """
--> 168         super().__init__(vars, **kwargs)
    169 
    170         self.max_treedepth = max_treedepth

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\pymc3\step_methods\hmc\base_hmc.py in __init__(self, vars, scaling, step_scale, is_cov, model, blocked, potential, dtype, Emax, target_accept, gamma, k, t0, adapt_step_size, step_rand, **theano_kwargs)
     86         vars = inputvars(vars)
     87 
---> 88         super().__init__(vars, blocked=blocked, model=model, dtype=dtype, **theano_kwargs)
     89 
     90         self.adapt_step_size = adapt_step_size

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\pymc3\step_methods\arraystep.py in __init__(self, vars, model, blocked, dtype, logp_dlogp_func, **theano_kwargs)
    252 
    253         if logp_dlogp_func is None:
--> 254             func = model.logp_dlogp_function(vars, dtype=dtype, **theano_kwargs)
    255         else:
    256             func = logp_dlogp_func

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\pymc3\model.py in logp_dlogp_function(self, grad_vars, tempered, **kwargs)
   1002         varnames = [var.name for var in grad_vars]
   1003         extra_vars = [var for var in self.free_RVs if var.name not in varnames]
-> 1004         return ValueGradFunction(costs, grad_vars, extra_vars, **kwargs)
   1005 
   1006     @property

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\pymc3\model.py in __init__(self, costs, grad_vars, extra_vars, dtype, casting, compute_grads, **kwargs)
    689 
    690         if compute_grads:
--> 691             grad = tt.grad(self._cost_joined, self._vars_joined)
    692             grad.name = "__grad"
    693             outputs = [self._cost_joined, grad]

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in grad(cost, wrt, consider_constant, disconnected_inputs, add_names, known_grads, return_disconnected, null_gradients)
    637             assert g.type.dtype in theano.tensor.float_dtypes
    638 
--> 639     rval = _populate_grad_dict(var_to_app_to_idx, grad_dict, wrt, cost_name)
    640 
    641     for i in range(len(rval)):

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in _populate_grad_dict(var_to_app_to_idx, grad_dict, wrt, cost_name)
   1438         return grad_dict[var]
   1439 
-> 1440     rval = [access_grad_cache(elem) for elem in wrt]
   1441 
   1442     return rval

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in <listcomp>(.0)
   1438         return grad_dict[var]
   1439 
-> 1440     rval = [access_grad_cache(elem) for elem in wrt]
   1441 
   1442     return rval

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_grad_cache(var)
   1391                     for idx in node_to_idx[node]:
   1392 
-> 1393                         term = access_term_cache(node)[idx]
   1394 
   1395                         if not isinstance(term, Variable):

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_term_cache(node)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in <listcomp>(.0)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_grad_cache(var)
   1391                     for idx in node_to_idx[node]:
   1392 
-> 1393                         term = access_term_cache(node)[idx]
   1394 
   1395                         if not isinstance(term, Variable):

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_term_cache(node)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in <listcomp>(.0)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_grad_cache(var)
   1391                     for idx in node_to_idx[node]:
   1392 
-> 1393                         term = access_term_cache(node)[idx]
   1394 
   1395                         if not isinstance(term, Variable):

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_term_cache(node)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in <listcomp>(.0)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_grad_cache(var)
   1391                     for idx in node_to_idx[node]:
   1392 
-> 1393                         term = access_term_cache(node)[idx]
   1394 
   1395                         if not isinstance(term, Variable):

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_term_cache(node)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in <listcomp>(.0)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_grad_cache(var)
   1391                     for idx in node_to_idx[node]:
   1392 
-> 1393                         term = access_term_cache(node)[idx]
   1394 
   1395                         if not isinstance(term, Variable):

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_term_cache(node)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in <listcomp>(.0)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_grad_cache(var)
   1391                     for idx in node_to_idx[node]:
   1392 
-> 1393                         term = access_term_cache(node)[idx]
   1394 
   1395                         if not isinstance(term, Variable):

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_term_cache(node)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in <listcomp>(.0)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_grad_cache(var)
   1391                     for idx in node_to_idx[node]:
   1392 
-> 1393                         term = access_term_cache(node)[idx]
   1394 
   1395                         if not isinstance(term, Variable):

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_term_cache(node)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in <listcomp>(.0)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_grad_cache(var)
   1391                     for idx in node_to_idx[node]:
   1392 
-> 1393                         term = access_term_cache(node)[idx]
   1394 
   1395                         if not isinstance(term, Variable):

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_term_cache(node)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in <listcomp>(.0)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_grad_cache(var)
   1391                     for idx in node_to_idx[node]:
   1392 
-> 1393                         term = access_term_cache(node)[idx]
   1394 
   1395                         if not isinstance(term, Variable):

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_term_cache(node)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in <listcomp>(.0)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_grad_cache(var)
   1391                     for idx in node_to_idx[node]:
   1392 
-> 1393                         term = access_term_cache(node)[idx]
   1394 
   1395                         if not isinstance(term, Variable):

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_term_cache(node)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in <listcomp>(.0)
   1059             inputs = node.inputs
   1060 
-> 1061             output_grads = [access_grad_cache(var) for var in node.outputs]
   1062 
   1063             # list of bools indicating if each output is connected to the cost

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_grad_cache(var)
   1391                     for idx in node_to_idx[node]:
   1392 
-> 1393                         term = access_term_cache(node)[idx]
   1394 
   1395                         if not isinstance(term, Variable):

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\gradient.py in access_term_cache(node)
   1218                             )
   1219 
-> 1220                 input_grads = node.op.L_op(inputs, node.outputs, new_output_grads)
   1221 
   1222                 if input_grads is None:

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\tensor\elemwise.py in L_op(self, inputs, outs, ograds)
    562 
    563         # compute grad with respect to broadcasted input
--> 564         rval = self._bgrad(inputs, outs, ograds)
    565 
    566         # TODO: make sure that zeros are clearly identifiable

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\tensor\elemwise.py in _bgrad(self, inputs, outputs, ograds)
    666                 ret.append(None)
    667                 continue
--> 668             ret.append(transform(scalar_igrad))
    669 
    670         return ret

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\tensor\elemwise.py in transform(r)
    657                 return DimShuffle((), ["x"] * nd)(res)
    658 
--> 659             new_r = Elemwise(node.op, {})(*[transform(ipt) for ipt in node.inputs])
    660             return new_r
    661 

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\tensor\elemwise.py in <listcomp>(.0)
    657                 return DimShuffle((), ["x"] * nd)(res)
    658 
--> 659             new_r = Elemwise(node.op, {})(*[transform(ipt) for ipt in node.inputs])
    660             return new_r
    661 

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\tensor\elemwise.py in transform(r)
    657                 return DimShuffle((), ["x"] * nd)(res)
    658 
--> 659             new_r = Elemwise(node.op, {})(*[transform(ipt) for ipt in node.inputs])
    660             return new_r
    661 

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\graph\op.py in __call__(self, *inputs, **kwargs)
    251 
    252         if config.compute_test_value != "off":
--> 253             compute_test_value(node)
    254 
    255         if self.default_output is not None:

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\graph\op.py in compute_test_value(node)
    124 
    125     # Create a thunk that performs the computation
--> 126     thunk = node.op.make_thunk(node, storage_map, compute_map, no_recycling=[])
    127     thunk.inputs = [storage_map[v] for v in node.inputs]
    128     thunk.outputs = [storage_map[v] for v in node.outputs]

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\graph\op.py in make_thunk(self, node, storage_map, compute_map, no_recycling, impl)
    632             )
    633             try:
--> 634                 return self.make_c_thunk(node, storage_map, compute_map, no_recycling)
    635             except (NotImplementedError, MethodNotDefined):
    636                 # We requested the c code, so don't catch the error.

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\graph\op.py in make_c_thunk(self, node, storage_map, compute_map, no_recycling)
    599                 raise NotImplementedError("float16")
    600         outputs = cl.make_thunk(
--> 601             input_storage=node_input_storage, output_storage=node_output_storage
    602         )
    603         thunk, node_input_filters, node_output_filters = outputs

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\link\c\basic.py in make_thunk(self, input_storage, output_storage, storage_map)
   1202         init_tasks, tasks = self.get_init_tasks()
   1203         cthunk, module, in_storage, out_storage, error_storage = self.__compile__(
-> 1204             input_storage, output_storage, storage_map
   1205         )
   1206 

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\link\c\basic.py in __compile__(self, input_storage, output_storage, storage_map)
   1140             input_storage,
   1141             output_storage,
-> 1142             storage_map,
   1143         )
   1144         return (

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\link\c\basic.py in cthunk_factory(self, error_storage, in_storage, out_storage, storage_map)
   1632             for node in self.node_order:
   1633                 node.op.prepare_node(node, storage_map, None, "c")
-> 1634             module = get_module_cache().module_from_key(key=key, lnk=self)
   1635 
   1636         vars = self.inputs + self.outputs + self.orphans

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\link\c\cmodule.py in module_from_key(self, key, lnk)
   1189             try:
   1190                 location = dlimport_workdir(self.dirname)
-> 1191                 module = lnk.compile_cmodule(location)
   1192                 name = module.__file__
   1193                 assert name.startswith(location)

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\link\c\basic.py in compile_cmodule(self, location)
   1548                     lib_dirs=self.lib_dirs(),
   1549                     libs=libs,
-> 1550                     preargs=preargs,
   1551                 )
   1552             except Exception as e:

C:\ProgramData\Anaconda3\envs\pm3env\lib\site-packages\theano\link\c\cmodule.py in compile_str(module_name, src_code, location, include_dirs, lib_dirs, libs, preargs, py_module, hide_symbols)
   2545             compile_stderr = compile_stderr.replace("\n", ". ")
   2546             raise Exception(
-> 2547                 f"Compilation failed (return status={status}): {compile_stderr}"
   2548             )
   2549         elif config.cmodule__compilation_warning and compile_stderr:

Exception: ("Compilation failed (return status=1): C:\\Users\\sreedatta\\AppData\\Local\\Theano\\compiledir_Windows-10-10.0.19041-SP0-Intel64_Family_6_Model_140_Stepping_1_GenuineIntel-3.7.9-64\\tmp81eb_5sq\\mod.cpp: In member function 'int {anonymous}::__struct_compiled_op_m67599e776bb0a5edbe20464e4ef6902fada5652e9f038845aa3f408620203691::run()':. C:\\Users\\sreedatta\\AppData\\Local\\Theano\\compiledir_Windows-10-10.0.19041-SP0-Intel64_Family_6_Model_140_Stepping_1_GenuineIntel-3.7.9-64\\tmp81eb_5sq\\mod.cpp:506:39: warning: narrowing conversion of 'V5_n0' from 'npy_intp' {aka 'long long int'} to 'int' inside { } [-Wnarrowing].      int init_totals[2] = {V5_n0, V1_n1};.                                        ^. C:\\Users\\sreedatta\\AppData\\Local\\Theano\\compiledir_Windows-10-10.0.19041-SP0-Intel64_Family_6_Model_140_Stepping_1_GenuineIntel-3.7.9-64\\tmp81eb_5sq\\mod.cpp:506:39: warning: narrowing conversion of 'V1_n1' from 'npy_intp' {aka 'long long int'} to 'int' inside { } [-Wnarrowing]. C:\\Users\\sreedatta\\AppData\\Local\\Theano\\compiledir_Windows-10-10.0.19041-SP0-Intel64_Family_6_Model_140_Stepping_1_GenuineIntel-3.7.9-64\\tmp81eb_5sq\\mod.cpp:521:5: warning: narrowing conversion of 'V5_stride0' from 'ssize_t' {aka 'long long int'} to 'int' inside { } [-Wnarrowing].      };.      ^. C:\\Users\\sreedatta\\AppData\\Local\\Theano\\compiledir_Windows-10-10.0.19041-SP0-Intel64_Family_6_Model_140_Stepping_1_GenuineIntel-3.7.9-64\\tmp81eb_5sq\\mod.cpp:521:5: warning: narrowing conversion of 'V1_stride0' from 'ssize_t' {aka 'long long int'} to 'int' inside { } [-Wnarrowing]. C:\\Users\\sreedatta\\AppData\\Local\\Theano\\compiledir_Windows-10-10.0.19041-SP0-Intel64_Family_6_Model_140_Stepping_1_GenuineIntel-3.7.9-64\\tmp81eb_5sq\\mod.cpp:521:5: warning: narrowing conversion of 'V1_stride1' from 'ssize_t' {aka 'long long int'} to 'int' inside { } [-Wnarrowing]. At global scope:. cc1plus.exe: warning: unrecognized command line option '-Wno-c++11-narrowing'. C:\\Users\\SREEDATTA\\AppData\\Local\\Temp\\ccjNNew1.s: Assembler messages:\r. C:\\Users\\SREEDATTA\\AppData\\Local\\Temp\\ccjNNew1.s:4410: Error: invalid register for .seh_savexmm\r. ", 'FunctionGraph(Elemwise{mul}(<TensorType(float64, col)>, <TensorType(int8, (True, True))>))')

Can one of you help?

Sree

Issue Analytics

  • State:closed
  • Created 2 years ago
  • Comments:20

github_iconTop GitHub Comments

1reaction
sreedatcommented, Aug 17, 2021

@tomicapretto thank you for a detailed step by step process description. I will get familiar with this process in a couple of days. Beginning this Friday, I will start sharing content. I will reach out if I get stuck or have a question.

Sree

1reaction
sreedatcommented, Aug 13, 2021

@tomicapretto thanks for the additional information regarding the version with Aesara. As one last attempt to get it to work on Windows 10, I have created an environment.yml file from the Windows 8.1 install where it is working and will test with Windows 10. I have found that when installing pymc3=3.11.2 or bambi=0.6.0, matplotlib=3.4.3 is unable to be compiled. It is breaking the entire installation process. I manually forced on Windows 8.1 to install the previous matplotlib=3.4.2. This compiles well. The issue is cropping on Windows 10 as well where '``matplotlib=3.4.3``` fails compilation.

I now have a good working environment for pymc3=3.11.2 on WIndows 10 and Windows 8.1; I have a good working pymc3=3.11.2 and bambi=0.5.0 together on Windows 8.1. I will see if the approach with the environment file will do the trick for bambi on Windows 10. If I get them to work, I will post those environment files for others to try and use.

Thanks again - Sree

Read more comments on GitHub >

github_iconTop Results From Across the Web

bambi.models — Bambi 0.8.0 documentation
All chains use the test value (usually the prior mean) as starting point. ... terms in the model # If that happens, raise...
Read more >
BAMBI: Bivariate Angular Mixture Models
BAMBI : An R package for Bivariate Angular Mixture Models ... standard error of the estimator is used to construct the test statistic....
Read more >
Unexpected errors while testing Python code with doctest
I'm using doctest to test my code, and I'm getting unexpected error while testing a simple function which produces two lines of text...
Read more >
A Simple Interface for Fitting Bayesian Linear Models in Python
Here we introduce an open source Python package named Bambi. (BAyesian Model Building Interface) that is built on top of the PyMC probabilistic...
Read more >
Airstream Bambi Travel Trailer Owner's Manual
packet included with this manual, to be more detailed. ... Test units used in RVs after the vehicle has been in ... Common...
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found