Errors while generating Image with GPU
See original GitHub issueErrors while trying to generate images with GPU:
XlaRuntimeError Traceback (most recent call last)
Input In [13], in <cell line: 9>()
23 encoded_images = encoded_images.sequences[..., 1:]
24 # decode images
---> 25 decoded_images = p_decode(encoded_images, vqgan_params)
26 decoded_images = decoded_images.clip(0.0, 1.0).reshape((-1, 256, 256, 3))
27 for decoded_img in decoded_images:
[... skipping hidden 15 frame]
File /usr/local/lib/python3.8/dist-packages/jax/_src/dispatch.py:713, in backend_compile(backend, built_c, options)
709 @profiler.annotate_function
710 def backend_compile(backend, built_c, options):
711 # we use a separate function call to ensure that XLA compilation appears
712 # separately in Python profiling results
--> 713 return backend.compile(built_c, compile_options=options)
XlaRuntimeError: UNKNOWN: Failed to determine best cudnn convolution algorithm for:
%cudnn-conv-bias-activation.2 = (f32[2,16,16,256]{2,1,3,0}, u8[0]{0}) custom-call(f32[2,16,16,256]{2,1,3,0} %bitcast.220, f32[1,1,256,256]{1,0,2,3} %copy, f32[256]{0} %get-tuple-element.341), window={size=1x1}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convBiasActivationForward", metadata={op_name="pmap(p_decode)/jit(main)/conv_general_dilated[window_strides=(1, 1) padding=((0, 0), (0, 0)) lhs_dilation=(1, 1) rhs_dilation=(1, 1) dimension_numbers=ConvDimensionNumbers(lhs_spec=(0, 3, 1, 2), rhs_spec=(3, 2, 0, 1), out_spec=(0, 3, 1, 2)) feature_group_count=1 batch_group_count=1 lhs_shape=(2, 16, 16, 256) rhs_shape=(1, 1, 256, 256) precision=None preferred_element_type=None]" source_file="/usr/local/lib/python3.8/dist-packages/flax/linen/linear.py" source_line=425}, backend_config="{\"conv_result_scale\":1,\"activation_mode\":\"0\",\"side_input_scale\":0}"
Original error: INTERNAL: All algorithms tried for %cudnn-conv-bias-activation.2 = (f32[2,16,16,256]{2,1,3,0}, u8[0]{0}) custom-call(f32[2,16,16,256]{2,1,3,0} %bitcast.220, f32[1,1,256,256]{1,0,2,3} %copy, f32[256]{0} %get-tuple-element.341), window={size=1x1}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convBiasActivationForward", metadata={op_name="pmap(p_decode)/jit(main)/conv_general_dilated[window_strides=(1, 1) padding=((0, 0), (0, 0)) lhs_dilation=(1, 1) rhs_dilation=(1, 1) dimension_numbers=ConvDimensionNumbers(lhs_spec=(0, 3, 1, 2), rhs_spec=(3, 2, 0, 1), out_spec=(0, 3, 1, 2)) feature_group_count=1 batch_group_count=1 lhs_shape=(2, 16, 16, 256) rhs_shape=(1, 1, 256, 256) precision=None preferred_element_type=None]" source_file="/usr/local/lib/python3.8/dist-packages/flax/linen/linear.py" source_line=425}, backend_config="{\"conv_result_scale\":1,\"activation_mode\":\"0\",\"side_input_scale\":0}" failed. Falling back to default algorithm. Per-algorithm errors:
Profiling failure on cuDNN engine 1#TC: UNKNOWN: CUDNN_STATUS_ALLOC_FAILED
in external/org_tensorflow/tensorflow/stream_executor/cuda/cuda_dnn.cc(4839): 'status'
Profiling failure on cuDNN engine 1: UNKNOWN: CUDNN_STATUS_ALLOC_FAILED
in external/org_tensorflow/tensorflow/stream_executor/cuda/cuda_dnn.cc(4839): 'status'
Profiling failure on cuDNN engine 1#TC: UNKNOWN: CUDNN_STATUS_ALLOC_FAILED
in external/org_tensorflow/tensorflow/stream_executor/cuda/cuda_dnn.cc(4839): 'status'
Profiling failure on cuDNN engine 1: UNKNOWN: CUDNN_STATUS_ALLOC_FAILED
in external/org_tensorflow/tensorflow/stream_executor/cuda/cuda_dnn.cc(4839): 'status'
To ignore this failure and try to use a fallback algorithm (which may have suboptimal performance), use XLA_FLAGS=--xla_gpu_strict_conv_algorithm_picker=false. Please also file a bug for the root cause of failing autotuning.
Issue Analytics
- State:
- Created a year ago
- Comments:10
Top Results From Across the Web
Using GPU error when use TensorFlow to train image
When I am runing a tensorflow image train job in the container tensorflow/tensorflow:latest-gpu, it doesn't work. Error message:
Read more >Error when trying to use GPU processing - Image.sc Forum
From my very limited understanding, I believe this is an error happening when retrieving the file back from the GPU. This error occurs...
Read more >Troubleshoot Photoshop graphics processor (GPU) and ...
Updating your graphics driver can fix many issues, such as crashing, incorrectly rendered images, and performance problems.
Read more >Visualizing and Communicating Errors in Rendered Images
In rendering research and development, it is important to have a formalized way of visualizing and communicating how and where errors occur ...
Read more >Parallelization Techniques for Error Diffusion with GPU ...
Abstract: Error diffusion is a classical but still popular method for generating a binary image that reproduces an original gray-scale image. In error...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
This works:
I too receive this error, indications are the GPU has run out of memory like this: https://patsybond172.github.io/kitchen-cabinets or this https://github.com/patsybond172