Weird error with Cox PH - Numpy arrays
See original GitHub issue---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~/.conda/envs/mypython3/lib/python3.6/site-packages/pandas/core/ops.py in na_op(x, y)
1175 result = expressions.evaluate(op, str_rep, x, y,
-> 1176 raise_on_error=True, **eval_kwargs)
1177 except TypeError:
~/.conda/envs/mypython3/lib/python3.6/site-packages/pandas/core/computation/expressions.py in evaluate(op, op_str, a, b, raise_on_error, use_numexpr, **eval_kwargs)
210 return _evaluate(op, op_str, a, b, raise_on_error=raise_on_error,
--> 211 **eval_kwargs)
212 return _evaluate_standard(op, op_str, a, b, raise_on_error=raise_on_error)
~/.conda/envs/mypython3/lib/python3.6/site-packages/pandas/core/computation/expressions.py in _evaluate_standard(op, op_str, a, b, raise_on_error, **eval_kwargs)
63 with np.errstate(all='ignore'):
---> 64 return op(a, b)
65
TypeError: can't multiply sequence by non-int of type 'float'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
~/.conda/envs/mypython3/lib/python3.6/site-packages/pandas/core/internals.py in eval(self, func, other, raise_on_error, try_cast, mgr)
1183 with np.errstate(all='ignore'):
-> 1184 result = get_result(other)
1185
~/.conda/envs/mypython3/lib/python3.6/site-packages/pandas/core/internals.py in get_result(other)
1152 else:
-> 1153 result = func(values, other)
1154
~/.conda/envs/mypython3/lib/python3.6/site-packages/pandas/core/ops.py in na_op(x, y)
1201 with np.errstate(all='ignore'):
-> 1202 result[mask] = op(xrav, y)
1203 else:
TypeError: can't multiply sequence by non-int of type 'float'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
<ipython-input-78-12234b38d026> in <module>()
2 duration_col='observed_duration',
3 event_col='defaulted',
----> 4 strata='Term')
5 cf.print_summary()
~/.conda/envs/mypython3/lib/python3.6/site-packages/lifelines/fitters/coxph_fitter.py in fit(self, df, duration_col, event_col, show_progress, initial_beta, include_likelihood, strata)
299 self._norm_mean = df.mean(0)
300 self._norm_std = df.std(0)
--> 301 df = normalize(df, self._norm_mean, self._norm_std)
302
303 E = E.astype(bool)
~/.conda/envs/mypython3/lib/python3.6/site-packages/lifelines/utils/__init__.py in normalize(X, mean, std)
509 mean = X.mean(0)
510 std = X.std(0)
--> 511 return (X - mean) / std
512
513
~/.conda/envs/mypython3/lib/python3.6/site-packages/pandas/core/ops.py in f(self, other, axis, level, fill_value)
1234 return self._combine_frame(other, na_op, fill_value, level)
1235 elif isinstance(other, ABCSeries):
-> 1236 return self._combine_series(other, na_op, fill_value, axis, level)
1237 else:
1238 if fill_value is not None:
~/.conda/envs/mypython3/lib/python3.6/site-packages/pandas/core/frame.py in _combine_series(self, other, func, fill_value, axis, level)
3504 fill_value=fill_value)
3505 return self._combine_series_infer(other, func, level=level,
-> 3506 fill_value=fill_value)
3507
3508 def _combine_series_infer(self, other, func, level=None, fill_value=None):
~/.conda/envs/mypython3/lib/python3.6/site-packages/pandas/core/frame.py in _combine_series_infer(self, other, func, level, fill_value)
3508 def _combine_series_infer(self, other, func, level=None, fill_value=None):
3509 if len(other) == 0:
-> 3510 return self * NA
3511
3512 if len(self) == 0:
~/.conda/envs/mypython3/lib/python3.6/site-packages/pandas/core/ops.py in f(self, other, axis, level, fill_value)
1239 self = self.fillna(fill_value)
1240
-> 1241 return self._combine_const(other, na_op)
1242
1243 f.__name__ = name
~/.conda/envs/mypython3/lib/python3.6/site-packages/pandas/core/frame.py in _combine_const(self, other, func, raise_on_error)
3541 def _combine_const(self, other, func, raise_on_error=True):
3542 new_data = self._data.eval(func=func, other=other,
-> 3543 raise_on_error=raise_on_error)
3544 return self._constructor(new_data)
3545
~/.conda/envs/mypython3/lib/python3.6/site-packages/pandas/core/internals.py in eval(self, **kwargs)
3195
3196 def eval(self, **kwargs):
-> 3197 return self.apply('eval', **kwargs)
3198
3199 def quantile(self, **kwargs):
~/.conda/envs/mypython3/lib/python3.6/site-packages/pandas/core/internals.py in apply(self, f, axes, filter, do_integrity_check, consolidate, **kwargs)
3089
3090 kwargs['mgr'] = self
-> 3091 applied = getattr(b, f)(**kwargs)
3092 result_blocks = _extend_blocks(applied, result_blocks)
3093
~/.conda/envs/mypython3/lib/python3.6/site-packages/pandas/core/internals.py in eval(self, func, other, raise_on_error, try_cast, mgr)
1189 raise
1190 except Exception as detail:
-> 1191 result = handle_error()
1192
1193 # technically a broadcast error in numpy can 'work' by returning a
~/.conda/envs/mypython3/lib/python3.6/site-packages/pandas/core/internals.py in handle_error()
1172 # The 'detail' variable is defined in outer scope.
1173 raise TypeError('Could not operate %s with block values %s' %
-> 1174 (repr(other), str(detail))) # noqa
1175 else:
1176 # return the values
TypeError: Could not operate nan with block values can't multiply sequence by non-int of type 'float'
Issue Analytics
- State:
- Created 6 years ago
- Comments:6 (2 by maintainers)
Top Results From Across the Web
Cox PH on Lifelines shows convergence problem
I'm running a Cox PH model using lifelines package on Python. ... ConvergenceError: Convergence halted due to matrix inversion problems.
Read more >Cross-validation not converging on Cox PH due to dummies
var()) A very low variance means that the column number_arrears_so_far_12 completely determines whether a subject dies or not. So I tried ...
Read more >Using Time Dependent Covariates and Time Dependent Coe ...
The issue is that the above code does not actually create a time dependent covariate, rather it creates a time-static value for each...
Read more >Cox Regression - Science topic - ResearchGate
I'm trying to build up a survival curve using Cox PH Regression. However, there are no categorical independent variables (no groups to compare...
Read more >Survival Analysis in Python (KM Estimate, Cox-PH and AFT ...
First, we need to install and load the following libraries to start with the survival analysis. Numpy: array manipulation; Pandas: Data ...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Ahh thanks man. I would have done it after work 😃
I dropped
Market
in the second regression model. Sorry for the lack of clarity.Is this worth a PR to add a better exception error?