Check failed: target_blobs.size() == source_layer.blobs_size() (1 vs. 2) Incompatible number of blobs for layer Conv
See original GitHub issueI used gen_model.py to generate train.prototxt. However, when training MobileNetv2-SSDLite, this issue arised.
I1213 14:58:07.939759 21634 net.cpp:761] Ignoring source layer input
I1213 14:58:07.939764 21634 net.cpp:761] Ignoring source layer data_input_0_split
F1213 14:58:07.939779 21634 net.cpp:767] Check failed: target_blobs.size() == source_layer.blobs_size() (1 vs. 2) Incompatible number of blobs for layer Conv
*** Check failure stack trace: ***
Issue Analytics
- State:
- Created 5 years ago
- Comments:10
Top Results From Across the Web
Check failed: target_blobs.size() == source_layer.blobs_size ...
Check failed: target_blobs.size() == source_layer.blobs_size() (1 vs. 2) Incompatible number of blobs for layer conv1 #5318.
Read more >caffe:Check failed: target_blobs.size() == source_layer ...
caffe:Check failed: target_blobs.size() == source_layer.blobs_size() (2 vs. 1) Incompatible number of blobs for layer conv1 · Ask Question.
Read more >Error when using convolution2dLayer between connected ...
The error is reported for the unpooling layer: ... The sizes for the CONV layer, MAXPOOL indices, and MAXPOOL size inputs are all...
Read more >Custom deep learning layers support - OpenCV
Define a custom layer in C++. Deep learning layer is a building block of network's pipeline. It has connections to input blobs and...
Read more >使用demo.py测试MobileNet-SSD报错:Check failed ...
结果报错: Check failed: target_blobs.size() == source_layer.blobs_size() (2 vs. 1) Incompatible number of blobs for layer res2a_branch1 一直在 ...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
I tried your gen_model.py. But got the issue: F0117 21:34:50.957195 1386 multibox_loss_layer.cpp:141] Check failed: num_priors_ * num_classes_ == bottom[1]->channels() (44091 vs. 41925) Number of priors must match number of confidence predictions. *** Check failure stack trace: *** @ 0x7f11efa7d5cd google::LogMessage::Fail() @ 0x7f11efa7f433 google::LogMessage::SendToLog() @ 0x7f11efa7d15b google::LogMessage::Flush() @ 0x7f11efa7fe1e google::LogMessageFatal::~LogMessageFatal() @ 0x7f11f0323a02 caffe::MultiBoxLossLayer<>::Reshape() @ 0x7f11f0388933 caffe::Net<>::Init() @ 0x7f11f038a161 caffe::Net<>::Net() @ 0x7f11f01be78a caffe::Solver<>::InitTrainNet() @ 0x7f11f01bfa87 caffe::Solver<>::Init() @ 0x7f11f01bfe2a caffe::Solver<>::Solver() @ 0x7f11f03a88e9 caffe::Creator_RMSPropSolver<>() @ 0x40afd9 train() @ 0x4077e8 main @ 0x7f11ee213830 __libc_start_main @ 0x4080b9 _start @ (nil) (unknown) Aborted (core dumped) Do you know how to fix it? TKS~
It works,thanks