[Bug] ValueError: Cannot load file containing pickled data when allow_pickle=False
See original GitHub issueDescribe the bug
I had training tacotron 2 for a while and now I want to add sample audio for one speaker. When I run using
CUDA_VISIBLE_DEVICES=0 python train.py --continue_path /media/DATA-2/TTS/TTS_Coqui/TTS/running-July-28-2022_09+54AM-68cef28a
I got error like this:
> Number of output frames: 2
> EPOCH: 0/1000
--> /media/DATA-2/TTS/TTS_Coqui/TTS-July-28-2022_09+54AM-68cef28a
> DataLoader initialization
| > Tokenizer:
| > add_blank: False
| > use_eos_bos: False
| > use_phonemes: True
| > phonemizer:
| > phoneme language: en-us
| > phoneme backend: gruut
| > Number of instances : 23359
| > Preprocessing samples
| > Max text length: 239
| > Min text length: 4
| > Avg text length: 86.08806027655294
|
| > Max audio length: 1145718.0
| > Min audio length: 11868.0
| > Avg audio length: 519904.13767712656
| > Num. instances discarded samples: 0
| > Batch group size: 0.
> TRAINING (2022-09-01 11:28:31)
/media/DATA-2/TTS/TTS_Coqui/TTS/TTS/tts/models/tacotron2.py:333: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
) // self.decoder.r
/media/DATA-2/TTS/TTS_Coqui/coqui_env/lib/python3.7/site-packages/torch/functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2228.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
/media/DATA-2/TTS/TTS_Coqui/TTS/TTS/tts/models/tacotron2.py:335: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
alignment_lengths = mel_lengths // self.decoder.r
--> STEP: 9/5840 -- GLOBAL_STEP: 1690010
| > decoder_loss: 1.35190 (2.06165)
| > postnet_loss: 1.23185 (1.89519)
| > stopnet_loss: 0.45206 (0.54466)
| > decoder_coarse_loss: 1.96557 (2.80050)
| > decoder_ddc_loss: 0.05431 (0.06398)
| > ga_loss: 0.00554 (0.01036)
| > decoder_diff_spec_loss: 0.46238 (0.58947)
| > postnet_diff_spec_loss: 0.40906 (0.52605)
| > decoder_ssim_loss: 0.48877 (0.48201)
| > postnet_ssim_loss: 0.45778 (0.45322)
| > loss: 2.08516 (2.81450)
| > align_error: 0.38218 (0.36455)
| > grad_norm: 11.03733 (13.36171)
| > current_lr: 0.00000
| > step_time: 0.16360 (0.17053)
| > loader_time: 0.00130 (0.00129)
--> STEP: 19/5840 -- GLOBAL_STEP: 1690020
| > decoder_loss: 1.26435 (2.00329)
| > postnet_loss: 1.14596 (1.83944)
| > stopnet_loss: 0.15051 (0.49044)
| > decoder_coarse_loss: 1.96471 (2.79364)
| > decoder_ddc_loss: 0.03852 (0.05443)
| > ga_loss: 0.00158 (0.00696)
| > decoder_diff_spec_loss: 0.44740 (0.57787)
| > postnet_diff_spec_loss: 0.39480 (0.51306)
| > decoder_ssim_loss: 0.43631 (0.47875)
| > postnet_ssim_loss: 0.40454 (0.44884)
| > loss: 1.68256 (2.70255)
| > align_error: 0.32000 (0.36616)
| > grad_norm: 6.11971 (12.52853)
| > current_lr: 0.00000
| > step_time: 0.22500 (0.19586)
| > loader_time: 0.00150 (0.00125)
! Run is kept in /media/DATA-2/TTS/TTS_Coqui/TTS-July-28-2022_09+54AM-68cef28a
Traceback (most recent call last):
File "/media/DATA-2/TTS/TTS_Coqui/coqui_env/lib/python3.7/site-packages/trainer/trainer.py", line 1492, in fit
self._fit()
File "/media/DATA-2/TTS/TTS_Coqui/coqui_env/lib/python3.7/site-packages/trainer/trainer.py", line 1476, in _fit
self.train_epoch()
File "/media/DATA-2/TTS/TTS_Coqui/coqui_env/lib/python3.7/site-packages/trainer/trainer.py", line 1254, in train_epoch
for cur_step, batch in enumerate(self.train_loader):
File "/media/DATA-2/TTS/TTS_Coqui/coqui_env/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 530, in __next__
data = self._next_data()
File "/media/DATA-2/TTS/TTS_Coqui/coqui_env/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 1224, in _next_data
return self._process_data(data)
File "/media/DATA-2/TTS/TTS_Coqui/coqui_env/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 1250, in _process_data
data.reraise()
File "/media/DATA-2/TTS/TTS_Coqui/coqui_env/lib/python3.7/site-packages/torch/_utils.py", line 457, in reraise
raise exception
ValueError: Caught ValueError in DataLoader worker process 1.
Original Traceback (most recent call last):
File "/media/DATA-2/TTS/TTS_Coqui/coqui_env/lib/python3.7/site-packages/torch/utils/data/_utils/worker.py", line 287, in _worker_loop
data = fetcher.fetch(index)
File "/media/DATA-2/TTS/TTS_Coqui/coqui_env/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 49, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/media/DATA-2/TTS/TTS_Coqui/coqui_env/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 49, in <listcomp>
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/media/DATA-2/TTS/TTS_Coqui/TTS/TTS/tts/datasets/dataset.py", line 180, in __getitem__
return self.load_data(idx)
File "/media/DATA-2/TTS/TTS_Coqui/TTS/TTS/tts/datasets/dataset.py", line 230, in load_data
token_ids = self.get_token_ids(idx, item["text"])
File "/media/DATA-2/TTS/TTS_Coqui/TTS/TTS/tts/datasets/dataset.py", line 213, in get_token_ids
token_ids = self.get_phonemes(idx, text)["token_ids"]
File "/media/DATA-2/TTS/TTS_Coqui/TTS/TTS/tts/datasets/dataset.py", line 196, in get_phonemes
out_dict = self.phoneme_dataset[idx]
File "/media/DATA-2/TTS/TTS_Coqui/TTS/TTS/tts/datasets/dataset.py", line 563, in __getitem__
ids = self.compute_or_load(item["audio_file"], item["text"])
File "/media/DATA-2/TTS/TTS_Coqui/TTS/TTS/tts/datasets/dataset.py", line 579, in compute_or_load
ids = np.load(cache_path)
File "/media/DATA-2/TTS/TTS_Coqui/coqui_env/lib/python3.7/site-packages/numpy/lib/npyio.py", line 445, in load
raise ValueError("Cannot load file containing pickled data "
ValueError: Cannot load file containing pickled data when allow_pickle=False
Environment
{
"CUDA": {
"GPU": [
"NVIDIA GeForce GTX 1660 Ti"
],
"available": true,
"version": "10.2"
},
"Packages": {
"PyTorch_debug": false,
"PyTorch_version": "1.11.0+cu102",
"TTS": "0.6.1",
"numpy": "1.19.5"
},
"System": {
"OS": "Linux",
"architecture": [
"64bit",
"ELF"
],
"processor": "x86_64",
"python": "3.8.0",
"version": "#118~18.04.1-Ubuntu SMP Thu Mar 3 13:53:15 UTC 2022"
}
}
Issue Analytics
- State:
- Created a year ago
- Comments:6 (2 by maintainers)
Top Results From Across the Web
Cannot load file containing pickled data - Python .npy I/O
Warning: Loading files that contain object arrays uses the pickle module, which is not secure against erroneous or maliciously constructed data.
Read more >Cannot load file containing pickled data when allow_pickle ...
When i try to run the following code, it gives me this error. 'ValueError: Cannot load file containing pickled data when allow_pickle=False'.
Read more >ValueError: Cannot load file containing pickled data when ...
This appears to be a bug with the 3DFSC job, and we were able to reproduce the error. Note that the error is...
Read more >Cannot load file containing pickled data - Python .npy I/O-numpy
Warning: Loading files that contain object arrays uses the pickle module, which is not secure against erroneous or maliciously constructed data. Consider ...
Read more >numpy.load — NumPy v1.25.dev0 Manual
If allow_pickle=True , but the file cannot be loaded as a pickle. ValueError. The file contains an object array, but allow_pickle=False given. See...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
I am done with this problem. If you meet this problem you can do this way:
Still error