question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

Multitask KISS-GP IndexError

See original GitHub issue

In Multitask_GP_Regression_Scalable_With_KISSGP.ipynb replacing test_x = torch.linspace(0, 1, 51) with test_x = torch.zeros(1), i.e., predicting on a single test point gives the following error:

---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-46-17c4b6da319c> in <module>()
     11 with torch.no_grad():
     12     test_x = torch.zeros(1)
---> 13     observed_pred = likelihood(model(test_x))
     14     # Get mean
     15     mean = observed_pred.mean()

~/anaconda/envs/py3/lib/python3.6/site-packages/gpytorch/models/exact_gp.py in __call__(self, *args, **kwargs)
    142                 n_train=n_train,
    143                 likelihood=self.likelihood,
--> 144                 precomputed_cache=self.mean_cache,
    145             )
    146             predictive_covar, covar_cache = exact_predictive_covar(

~/anaconda/envs/py3/lib/python3.6/site-packages/gpytorch/functions/__init__.py in exact_predictive_mean(full_covar, full_mean, train_labels, n_train, likelihood, precomputed_cache)
     89 
     90         full_covar = NonLazyVariable(full_covar)
---> 91     return full_covar.exact_predictive_mean(full_mean, train_labels, n_train, likelihood, precomputed_cache)
     92 
     93 

~/anaconda/envs/py3/lib/python3.6/site-packages/gpytorch/lazy/lazy_evaluated_kernel_variable.py in exact_predictive_mean(self, full_mean, train_labels, n_train, likelihood, precomputed_cache)
    124         else:
    125             return super(LazyEvaluatedKernelVariable, self).exact_predictive_mean(
--> 126                 full_mean, train_labels, n_train, likelihood, precomputed_cache
    127             )
    128 

~/anaconda/envs/py3/lib/python3.6/site-packages/gpytorch/lazy/lazy_variable.py in exact_predictive_mean(self, full_mean, train_labels, n_train, likelihood, precomputed_cache)
    427         else:
    428             test_train_covar = self[n_train:, :n_train]
--> 429         res = test_train_covar.matmul(precomputed_cache)
    430         if res.ndimension() == 3:
    431             res = res.squeeze(-1)

~/anaconda/envs/py3/lib/python3.6/site-packages/gpytorch/lazy/lazy_variable.py in matmul(self, tensor)
    632             raise RuntimeError
    633 
--> 634         func = Matmul(self.representation_tree())
    635         return func(tensor, *self.representation())
    636 

~/anaconda/envs/py3/lib/python3.6/site-packages/gpytorch/lazy/lazy_evaluated_kernel_variable.py in representation_tree(self)
    112 
    113     def representation_tree(self):
--> 114         return LazyVariableRepresentationTree(self.evaluate_kernel())
    115 
    116     def evaluate(self):

~/anaconda/envs/py3/lib/python3.6/site-packages/gpytorch/lazy/lazy_evaluated_kernel_variable.py in evaluate_kernel(self)
     96                 x2 = self.x2
     97 
---> 98             self._cached_kernel_eval = super(Kernel, self.kernel).__call__(x1, x2, **self.params)
     99             if self.squeeze_row:
    100                 self._cached_kernel_eval.squeeze_(-2)

~/anaconda/envs/py3/lib/python3.6/site-packages/gpytorch/module.py in __call__(self, *inputs, **kwargs)
    160 
    161     def __call__(self, *inputs, **kwargs):
--> 162         outputs = self.forward(*inputs, **kwargs)
    163         if torch.is_tensor(outputs) or isinstance(outputs, RandomVariable) or isinstance(outputs, LazyVariable):
    164             return outputs

~/anaconda/envs/py3/lib/python3.6/site-packages/gpytorch/kernels/multitask_kernel.py in forward(self, x1, x2)
     62         task_indices = torch.arange(self.n_tasks, device=x1.device).long()
     63         covar_i = self.task_covar_module(task_indices).evaluate_kernel()
---> 64         covar_x = self.data_covar_module.forward(x1, x2)
     65         if covar_x.size(0) == 1:
     66             covar_x = covar_x[0]

~/anaconda/envs/py3/lib/python3.6/site-packages/gpytorch/kernels/grid_interpolation_kernel.py in forward(self, x1, x2, **kwargs)
     56             base_lazy_var = base_lazy_var.repeat(x1.size(0), 1, 1)
     57 
---> 58         left_interp_indices, left_interp_values = self._compute_grid(x1)
     59         if torch.equal(x1.data, x2.data):
     60             right_interp_indices = left_interp_indices

~/anaconda/envs/py3/lib/python3.6/site-packages/gpytorch/kernels/grid_interpolation_kernel.py in _compute_grid(self, inputs)
     39         batch_size, n_data, n_dimensions = inputs.size()
     40         inputs = inputs.view(batch_size * n_data, n_dimensions)
---> 41         interp_indices, interp_values = Interpolation().interpolate(Variable(self.grid), inputs)
     42         interp_indices = interp_indices.view(batch_size, n_data, -1)
     43         interp_values = interp_values.view(batch_size, n_data, -1)

~/anaconda/envs/py3/lib/python3.6/site-packages/gpytorch/utils/interpolation.py in interpolate(self, x_grid, x_target, interp_points)
    114                     dim_interp_values[left_boundary_pts[j], :] = 0
    115                     dim_interp_values[left_boundary_pts[j], closest_from_first[j]] = 1
--> 116                     lower_grid_pt_idxs[left_boundary_pts[j]] = 0
    117 
    118             right_boundary_pts = torch.nonzero(lower_grid_pt_idxs > num_grid_points - num_coefficients)

IndexError: too many indices for tensor of dimension 0

Issue Analytics

  • State:closed
  • Created 5 years ago
  • Comments:7 (4 by maintainers)

github_iconTop GitHub Comments

1reaction
gpleisscommented, Aug 31, 2018

Okay - the code in 1b809b3 should fix the problem you were seeing with 2D inputs. As far as test predictions for a single point - this commit might also fix that. If not, would you mind opening a separate issue for that?

0reactions
tzoikercommented, Sep 1, 2018

Seems working, thank you!

Read more comments on GitHub >

github_iconTop Results From Across the Web

Multitask KISS-GP single test point error · Issue #250 · cornellius-gp ...
Multitask KISS-GP single test point error #250 ... num_grid_points - num_coefficients) IndexError: too many indices for tensor of dimension 0.
Read more >
Source code for gpytorch.distributions.multivariate_normal
[docs]class MultivariateNormal(TMultivariateNormal, Distribution): """ Constructs a multivariate normal random variable, based on mean and covariance.
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found