question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

GNNExplainer: tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes

See original GitHub issue

Hi Daniele and all,

thanks for creating and maintaining this great library!

I have been trying to use GNNExplainer, but I keep seeing the below error message. Still don’t know if it’s a bug or something i am doing wrong on my side, but there is no much documentation or examples around it.

I am able to run smoothly the sample code at https://github.com/danielegrattarola/spektral/blob/master/examples/other/explain_node_predictions.py.

But when applying to my dataset (where I can run successfully a GCN model), i get the below:

dataset
Out[66]: SADataset(n_graphs=1)

dataset[0]
Out[67]: Graph(n_nodes=1653, n_node_features=42, n_edge_features=None, n_labels=10)

x_exp, a_exp = dataset[0].x, dataset[0].a

x_exp.shape
Out[69]: (1653, 42)

a_exp.shape
Out[70]: TensorShape([1653, 1653])

explainer = GNNExplainer(model, preprocess=gcn_filter, verbose=True)
n_hops was automatically inferred to be 2

node_idx = 0

adj_mask, feat_mask = explainer.explain_node(x=x_exp, a=a_exp, node_idx=node_idx)

pred_loss: 1.097847819328308, a_size_loss: 0.5874298214912415, a_entropy_loss: 0.0692998617887497, smoothness_loss: [[0.]], x_size_loss: 2.0829315185546875, x_entropy_loss: 0.06919442862272263
pred_loss: 1.0877137184143066, a_size_loss: 0.5852940678596497, a_entropy_loss: 0.06929884105920792, smoothness_loss: [[0.]], x_size_loss: 2.075951099395752, x_entropy_loss: 0.06918510049581528
[... output removed]
pred_loss: 0.6421844959259033, a_size_loss: 0.3796449303627014, a_entropy_loss: 0.05964722856879234, smoothness_loss: [[0.]], x_size_loss: 1.379091501235962, x_entropy_loss: 0.05970795825123787
pred_loss: 0.6415124535560608, a_size_loss: 0.37782761454582214, a_entropy_loss: 0.05948375537991524, smoothness_loss: [[0.]], x_size_loss: 1.372214436531067, x_entropy_loss: 0.059564121067523956

adj_mask.shape
Out[75]: TensorShape([2349])

adj_mask
Out[76]: 
<tf.Variable 'Variable:0' shape=(2349,) dtype=float32, numpy=
array([ 0.8150444 ,  0.77765435, -0.9916512 , ..., -1.0242233 ,
       -0.9629407 , -0.9988212 ], dtype=float32)>


feat_mask.shape
Out[77]: TensorShape([1, 42])

feat_mask
Out[78]: 
<tf.Variable 'Variable:0' shape=(1, 42) dtype=float32, numpy=
array([[ 0.58385307, -1.3217939 , -1.0627872 , -0.00148061, -1.0020486 ,
        -0.9942789 , -0.97092587, -0.9922697 ,  0.3853194 , -0.83190703,
        -1.1318972 , -0.99104863, -1.0001428 , -0.9827519 , -0.9750702 ,
        -0.96384555, -0.890569  , -1.0193573 ,  0.4747884 , -0.91873515,
         0.7341433 , -0.97718424, -0.86869913, -0.9699511 ,  0.37709397,
        -1.0660834 , -0.92709947, -0.89111555, -1.0546191 , -1.0837208 ,
        -1.0699799 , -1.0806109 ,  0.61809593, -0.9817147 , -1.0526807 ,
        -0.95195514, -1.0162035 , -1.181156  , -1.0657567 , -1.0472083 ,
        -0.85559815, -1.0388821 ]], dtype=float32)>

G = explainer.plot_subgraph(adj_mask, feat_mask, node_idx)
Traceback (most recent call last):
  File ".pyenv/versions/3.7.6/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3331, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-74-182e1ffafc94>", line 1, in <module>
    G = explainer.plot_subgraph(adj_mask, feat_mask, node_idx)
  File ".pyenv/versions/3.7.6/lib/python3.7/site-packages/spektral/models/gnn_explainer.py", line 276, in plot_subgraph
    adj_mtx, top_ftrs = self._explainer_cleaning(a_mask, x_mask, node_idx, a_thresh)
  File ".pyenv/versions/3.7.6/lib/python3.7/site-packages/spektral/models/gnn_explainer.py", line 243, in _explainer_cleaning
    tf.multiply, self.comp_graph, selected_adj_mask
  File ".pyenv/versions/3.7.6/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py", line 206, in wrapper
    return target(*args, **kwargs)
  File ".pyenv/versions/3.7.6/lib/python3.7/site-packages/tensorflow/python/ops/sparse_ops.py", line 2931, in map_values
    op(*inner_args, **inner_kwargs),
  File ".pyenv/versions/3.7.6/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py", line 206, in wrapper
    return target(*args, **kwargs)
  File ".pyenv/versions/3.7.6/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py", line 530, in multiply
    return gen_math_ops.mul(x, y, name)
  File ".pyenv/versions/3.7.6/lib/python3.7/site-packages/tensorflow/python/ops/gen_math_ops.py", line 6240, in mul
    _ops.raise_from_not_ok_status(e, name)
  File ".pyenv/versions/3.7.6/lib/python3.7/site-packages/tensorflow/python/framework/ops.py", line 6897, in raise_from_not_ok_status
    six.raise_from(core._status_to_exception(e.code, message), None)
  File "<string>", line 3, in raise_from
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [2349] vs. [2589] [Op:Mul]

Issue Analytics

  • State:closed
  • Created 2 years ago
  • Comments:24 (12 by maintainers)

github_iconTop GitHub Comments

1reaction
antonioaa1979commented, Aug 6, 2021

good one… here we go…

adj_mask, feat_mask = explainer.explain_node(x=x_exp, a=spektral.utils.sparse.sp_matrix_to_sp_tensor(a_exp), node_idx=node_idx)
...

G = explainer.plot_subgraph(adj_mask, feat_mask, node_idx)

plt.show()

all runs smoothly and produces a nice chart! Thanks, i can confirm the bugfix works!

1reaction
AlexandrMelniccommented, Aug 6, 2021

when you give in input a_exp in the explain_node can you convert it into a sparse tensor? So we can understand if everything else works. Then I can rewrite the function such that it takes in input a scipy sparse matrix.

Read more comments on GitHub >

github_iconTop Results From Across the Web

tensorflow.python.framework.errors_impl.InvalidArgumentError
Tensorflow cannot broadcast a matrix with different shapes to compare therefore you are getting this error. The shape of x is (1 ,...
Read more >
Error InvalidArgumentError: Incompatible shapes when using ...
I have the same problem. tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [300,3] vs. [2700,3]
Read more >
Incompatible shapes - Keras - TensorFlow Forum
tensorflow.python.framework.errors_impl.InvalidArgumentError: 2 root error(s) found. (0) Invalid argument: Incompatible shapes: [32,30] vs.
Read more >
Invalid argument: Incompatible shapes: [227] vs. [89]
Hello Guys. I have to detect the changes that a forget gate has in an lstm cell in feed forwarding data, in order...
Read more >
CNN Training Question - Image Processing - KNIME Forum
I have this 2 Python scripts in Network Creator an Network Learner but I have the error of the shapes: InvalidArgumentError (see above...
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found