Not able to create Dask client using AzureMLCluster object
See original GitHub issueI have created a Dask cluster on Azure ML using the following API.
amlcluster = AzureMLCluster(ws,
vm_size="STANDARD_D1",
datastores=[Datastore.get(ws, "my_datastore")],
environment_definition=ws.environments['AzureML-Dask-CPU'],
initial_node_count=2,
scheduler_idle_timeout=600,
vnet='some_vnet',
subnet='subnet1',
vnet_resource_group='some_rsrc_group',
ct_name="my_dask_cluster"
)
Once the cluster is created, if I try to print the variable amlcluster
in Jupyter Lab, it throws the following error.
KeyError Traceback (most recent call last) /anaconda/envs/azureml_custom_py37/lib/python3.7/site-packages/IPython/core/formatters.py in call(self, obj) 916 method = get_real_method(obj, self.print_method) 917 if method is not None: –> 918 method() 919 return True 920
/anaconda/envs/azureml_custom_py37/lib/python3.7/site-packages/distributed/deploy/cluster.py in ipython_display(self, **kwargs) 361 from IPython.display import display 362 –> 363 data = {“text/plain”: repr(self), “text/html”: self.repr_html()} 364 display(data, raw=True) 365
/anaconda/envs/azureml_custom_py37/lib/python3.7/site-packages/distributed/deploy/cluster.py in repr(self) 389 self._cluster_class_name, 390 self.scheduler_address, –> 391 len(self.scheduler_info[“workers”]), 392 sum(w[“nthreads”] for w in self.scheduler_info[“workers”].values()), 393 )
KeyError: ‘workers’
After the error, it provides just a Dashboard Link. Not sure if it is supposed to print anything else.
If I try to create a Dask Client that alos fails:
client = Client(amlcluster)
This is how the library version looks like for me:
dask 2.20.0 py_0 dask-cloudprovider 0.4.1 <pip> dask-core 2.20.0 py_0 dask-glm 0.2.0 py_1 conda-forge dask-ml 1.6.0 py_0 conda-forge dask-xgboost 0.1.10 <pip>
Issue Analytics
- State:
- Created 3 years ago
- Comments:16 (16 by maintainers)
Top GitHub Comments
Huh, ok! Guess the problem is more recent than 2.20! Maybe there’s another line of code added somewhere elses. I’ll change the bump suggestion in #165 to 2.30.
Replicated! I downgraded distributed to 2.11, and I got this:
Opening new issue about bumping the version requirement.