idle dask-worker & dask-scheduler have elevated CPU utilization
See original GitHub issueI am running dask-worker & dask-scheduler colocated.
Idle dask-worker & dask-scheduler show ~3% for each worker/task, without any dask client connected.
log is clean.
10528 owner 20 0 13016 3168 2836 S 0.0 0.0 0:00.00 ├─ /bin/bash -c source /opt/miniconda3/etc/profile.d/conda.sh;conda activate owner;dask-worker --nprocs 10 localhos
10541 owner 20 0 1840M 113M 28772 S 6.0 0.1 15h26:52 │ └─ /home/owner/.conda/envs/owner/bin/python /home/owner/.conda/envs/owner/bin/dask-worker --nprocs 10 localhost:
10577 owner 20 0 1091M 323M 88340 S 2.6 0.3 8h25:52 │ ├─ /home/owner/.conda/envs/owner/bin/python -c from multiprocessing.spawn import spawn_main; spawn_main(track
10573 owner 20 0 1088M 320M 88348 S 2.6 0.2 8h29:13 │ ├─ /home/owner/.conda/envs/owner/bin/python -c from multiprocessing.spawn import spawn_main; spawn_main(track
10569 owner 20 0 1085M 317M 88568 S 2.6 0.2 8h21:54 │ ├─ /home/owner/.conda/envs/owner/bin/python -c from multiprocessing.spawn import spawn_main; spawn_main(track
10566 owner 20 0 1082M 313M 88424 S 2.0 0.2 8h15:14 │ ├─ /home/owner/.conda/envs/owner/bin/python -c from multiprocessing.spawn import spawn_main; spawn_main(track
10562 owner 20 0 1093M 325M 88476 S 2.0 0.3 8h33:52 │ ├─ /home/owner/.conda/envs/owner/bin/python -c from multiprocessing.spawn import spawn_main; spawn_main(track
10559 owner 20 0 1089M 321M 88816 S 2.6 0.3 8h33:56 │ ├─ /home/owner/.conda/envs/owner/bin/python -c from multiprocessing.spawn import spawn_main; spawn_main(track
10556 owner 20 0 1082M 313M 88600 S 2.6 0.2 8h25:37 │ ├─ /home/owner/.conda/envs/owner/bin/python -c from multiprocessing.spawn import spawn_main; spawn_main(track
10554 owner 20 0 1085M 315M 88176 S 2.6 0.2 8h17:27 │ ├─ /home/owner/.conda/envs/owner/bin/python -c from multiprocessing.spawn import spawn_main; spawn_main(track
10551 owner 20 0 1106M 339M 88212 S 2.6 0.3 8h32:54 │ ├─ /home/owner/.conda/envs/owner/bin/python -c from multiprocessing.spawn import spawn_main; spawn_main(track
10547 owner 20 0 1091M 322M 87940 S 2.6 0.3 8h28:29 │ ├─ /home/owner/.conda/envs/owner/bin/python -c from multiprocessing.spawn import spawn_main; spawn_main(track
10545 owner 20 0 28264 11332 6284 S 0.0 0.0 0:00.03 │ └─ /home/owner/.conda/envs/owner/bin/python -c from multiprocessing.resource_tracker import main;main(10)
10517 owner 20 0 13020 3268 2940 S 0.0 0.0 0:00.00 ├─ /bin/bash -c source /opt/miniconda3/etc/profile.d/conda.sh;conda activate owner;dask-scheduler
10540 owner 20 0 2282M 1839M 38752 S 3.3 1.4 9h17:18 │ └─ /home/owner/.conda/envs/owner/bin/python /home/owner/.conda/envs/owner/bin/dask-scheduler
Environment:
conda info
active environment : owner
active env location : /home/owner/.conda/envs/owner
shell level : 2
user config file : /home/owner/.condarc
populated config files :
conda version : 4.9.2
conda-build version : not installed
python version : 3.8.5.final.0
virtual packages : __cuda=11.2=0
__glibc=2.27=0
__unix=0=0
__archspec=1=x86_64
base environment : /opt/miniconda3 (writable)
channel URLs : https://repo.anaconda.com/pkgs/main/linux-64
https://repo.anaconda.com/pkgs/main/noarch
https://repo.anaconda.com/pkgs/r/linux-64
https://repo.anaconda.com/pkgs/r/noarch
package cache : /opt/miniconda3/pkgs
/home/owner/.conda/pkgs
envs directories : /opt/miniconda3/envs
/home/owner/.conda/envs
platform : linux-64
user-agent : conda/4.9.2 requests/2.24.0 CPython/3.8.5 Linux/5.4.0-62-generic ubuntu/18.04.5 glibc/2.27
UID:GID : 0:0
netrc file : None
offline mode : False
dask 2021.4.0 pyhd8ed1ab_0 conda-forge
dask-core 2021.4.0 pyhd8ed1ab_0 conda-forge
distributed 2021.4.0 py38h578d9bd_0 conda-forge
Issue Analytics
- State:
- Created 2 years ago
- Comments:9 (6 by maintainers)
Top Results From Across the Web
Dask distributed: How to computationally recognize if worker ...
Is there a way to detect idling workers, e.g. by computing the average CPU utilization of the worker in the last minute?
Read more >Scheduler State Machine - Dask.distributed
Pick a worker for a runnable root-ish task, if not all are busy. Picks the least-busy worker out of the idle workers (idle...
Read more >Dashboard Diagnostics - Dask documentation
Task Processing/CPU Utilization/Occupancy: Tasks being processed by each ... The scheduler will try to ensure that the workers are processing about the same ......
Read more >Configuration - Dask documentation
Environment variables like DASK_DISTRIBUTED__SCHEDULER__WORK_STEALING=True ... Within dask_foo code, use the dask.config.get function to access ...
Read more >Worker Memory Management - Dask.distributed
If the system reported memory use is above 70% of the target memory usage (spill threshold), then the worker will start dumping unused...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Managed to bring it down to 0.7% per worker. Profile interval made up most of the difference.
It might make sense for folks to take a look at how we use psutil. Maybe there are nicer/cheaper ways to get system usage information.
On Fri, Jul 16, 2021 at 5:38 AM Jacob Tomlinson @.***> wrote: