convert yolact to ONNX
See original GitHub issueHello again, I’m try to convert yolact to ONNX with the following code:
weights_path = '/home/ws/DL/yolact/weights/yolact_im700_54_800000.pth'
import torch
import torch.onnx
import yolact
import torchvision
model = yolact.Yolact()
# state_dict = torch.load(weights_path)
# model.load_state_dict(state_dict)
model.load_weights(weights_path)
dummy_input = torch.randn(1, 3, 640, 480)
torch.onnx.export(model, dummy_input, "onnx_model_name.onnx")
error msg:
/home/ws/DL/yolact/yolact.py:256: TracerWarning: Converting a tensor to a Python index might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
for j, i in product(range(conv_h), range(conv_w)):
/home/ws/DL/yolact/yolact.py:279: TracerWarning: torch.Tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect.
self.priors = torch.Tensor(prior_data).view(-1, 4)
/home/ws/DL/yolact/yolact.py:279: TracerWarning: Converting a tensor to a Python float might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
self.priors = torch.Tensor(prior_data).view(-1, 4)
/home/ws/DL/yolact/layers/functions/detection.py:74: TracerWarning: Converting a tensor to a Python index might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
for batch_idx in range(batch_size):
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-2-a796dc0eef97> in <module>
13 dummy_input = torch.randn(1, 3, 700, 700)
14
---> 15 torch.onnx.export(model, dummy_input, "onnx_model_name.onnx")
~/.local/lib/python3.6/site-packages/torch/onnx/__init__.py in export(*args, **kwargs)
23 def export(*args, **kwargs):
24 from torch.onnx import utils
---> 25 return utils.export(*args, **kwargs)
26
27
~/.local/lib/python3.6/site-packages/torch/onnx/utils.py in export(model, args, f, export_params, verbose, training, input_names, output_names, aten, export_raw_ir, operator_export_type, opset_version, _retain_param_name, do_constant_folding, strip_doc_string)
129 operator_export_type=operator_export_type, opset_version=opset_version,
130 _retain_param_name=_retain_param_name, do_constant_folding=do_constant_folding,
--> 131 strip_doc_string=strip_doc_string)
132
133
~/.local/lib/python3.6/site-packages/torch/onnx/utils.py in _export(model, args, f, export_params, verbose, training, input_names, output_names, operator_export_type, export_type, example_outputs, propagate, opset_version, _retain_param_name, do_constant_folding, strip_doc_string)
361 output_names, operator_export_type,
362 example_outputs, propagate,
--> 363 _retain_param_name, do_constant_folding)
364
365 # TODO: Don't allocate a in-memory string for the protobuf
~/.local/lib/python3.6/site-packages/torch/onnx/utils.py in _model_to_graph(model, args, verbose, training, input_names, output_names, operator_export_type, example_outputs, propagate, _retain_param_name, do_constant_folding, _disable_torch_constant_prop)
264 model.graph, tuple(args), example_outputs, False, propagate)
265 else:
--> 266 graph, torch_out = _trace_and_get_graph_from_model(model, args, training)
267 state_dict = _unique_state_dict(model)
268 params = list(state_dict.values())
~/.local/lib/python3.6/site-packages/torch/onnx/utils.py in _trace_and_get_graph_from_model(model, args, training)
223 # training mode was.)
224 with set_training(model, training):
--> 225 trace, torch_out = torch.jit.get_trace_graph(model, args, _force_outplace=True)
226
227 if orig_state_dict_keys != _unique_state_dict(model).keys():
~/.local/lib/python3.6/site-packages/torch/jit/__init__.py in get_trace_graph(f, args, kwargs, _force_outplace, return_inputs)
229 if not isinstance(args, tuple):
230 args = (args,)
--> 231 return LegacyTracedModule(f, _force_outplace, return_inputs)(*args, **kwargs)
232
233
~/.local/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
491 result = self._slow_forward(*input, **kwargs)
492 else:
--> 493 result = self.forward(*input, **kwargs)
494 for hook in self._forward_hooks.values():
495 hook_result = hook(self, input, result)
~/.local/lib/python3.6/site-packages/torch/jit/__init__.py in forward(self, *args)
292 try:
293 trace_inputs = _unflatten(all_trace_inputs[:len(in_vars)], in_desc)
--> 294 out = self.inner(*trace_inputs)
295 out_vars, _ = _flatten(out)
296 torch._C._tracer_exit(tuple(out_vars))
~/.local/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
489 hook(self, input)
490 if torch._C._get_tracing_state():
--> 491 result = self._slow_forward(*input, **kwargs)
492 else:
493 result = self.forward(*input, **kwargs)
~/.local/lib/python3.6/site-packages/torch/nn/modules/module.py in _slow_forward(self, *input, **kwargs)
479 tracing_state._traced_module_stack.append(self)
480 try:
--> 481 result = self.forward(*input, **kwargs)
482 finally:
483 tracing_state.pop_scope()
~/DL/yolact/yolact.py in forward(self, x)
615 pred_outs['conf'] = F.softmax(pred_outs['conf'], -1)
616
--> 617 return self.detect(pred_outs)
618
619
~/DL/yolact/layers/functions/detection.py in __call__(self, predictions)
73
74 for batch_idx in range(batch_size):
---> 75 decoded_boxes = decode(loc_data[batch_idx], prior_data)
76 result = self.detect(batch_idx, conf_preds, decoded_boxes, mask_data, inst_data)
77
RuntimeError: isTensor() ASSERT FAILED at /pytorch/aten/src/ATen/core/ivalue.h:209, please report a bug to PyTorch. (toTensor at /pytorch/aten/src/ATen/core/ivalue.h:209)
frame #0: std::function<std::string ()>::operator()() const + 0x11 (0x7f721e0ac441 in /home/ws/.local/lib/python3.6/site-packages/torch/lib/libc10.so)
frame #1: c10::Error::Error(c10::SourceLocation, std::string const&) + 0x2a (0x7f721e0abd7a in /home/ws/.local/lib/python3.6/site-packages/torch/lib/libc10.so)
frame #2: <unknown function> + 0x979ad2 (0x7f721d130ad2 in /home/ws/.local/lib/python3.6/site-packages/torch/lib/libtorch.so.1)
frame #3: torch::jit::tracer::getNestedValueTrace(c10::IValue const&) + 0x41 (0x7f721d3939a1 in /home/ws/.local/lib/python3.6/site-packages/torch/lib/libtorch.so.1)
frame #4: <unknown function> + 0xa7651b (0x7f721d22d51b in /home/ws/.local/lib/python3.6/site-packages/torch/lib/libtorch.so.1)
frame #5: <unknown function> + 0xa766db (0x7f721d22d6db in /home/ws/.local/lib/python3.6/site-packages/torch/lib/libtorch.so.1)
frame #6: <unknown function> + 0x457942 (0x7f725d6d2942 in /home/ws/.local/lib/python3.6/site-packages/torch/lib/libtorch_python.so)
frame #7: <unknown function> + 0x130cfc (0x7f725d3abcfc in /home/ws/.local/lib/python3.6/site-packages/torch/lib/libtorch_python.so)
frame #8: _PyCFunction_FastCallDict + 0x35c (0x56204c in /usr/bin/python3)
frame #9: /usr/bin/python3() [0x5a1501]
frame #10: PyObject_Call + 0x3e (0x57c2fe in /usr/bin/python3)
frame #11: /usr/bin/python3() [0x5136c6]
frame #12: _PyObject_FastCallKeywords + 0x19c (0x57ec0c in /usr/bin/python3)
frame #13: /usr/bin/python3() [0x4f88ba]
frame #14: _PyEval_EvalFrameDefault + 0x467 (0x4f98c7 in /usr/bin/python3)
frame #15: _PyFunction_FastCallDict + 0xf5 (0x4f4065 in /usr/bin/python3)
frame #16: /usr/bin/python3() [0x5a1481]
frame #17: PyObject_Call + 0x3e (0x57c2fe in /usr/bin/python3)
frame #18: /usr/bin/python3() [0x513601]
frame #19: _PyObject_FastCallKeywords + 0x19c (0x57ec0c in /usr/bin/python3)
frame #20: /usr/bin/python3() [0x4f88ba]
frame #21: _PyEval_EvalFrameDefault + 0x467 (0x4f98c7 in /usr/bin/python3)
frame #22: /usr/bin/python3() [0x4f6128]
frame #23: _PyFunction_FastCallDict + 0x2fe (0x4f426e in /usr/bin/python3)
frame #24: /usr/bin/python3() [0x5a1481]
frame #25: PyObject_Call + 0x3e (0x57c2fe in /usr/bin/python3)
frame #26: _PyEval_EvalFrameDefault + 0x1851 (0x4facb1 in /usr/bin/python3)
frame #27: /usr/bin/python3() [0x4f6128]
frame #28: _PyFunction_FastCallDict + 0x2fe (0x4f426e in /usr/bin/python3)
frame #29: /usr/bin/python3() [0x5a1481]
frame #30: PyObject_Call + 0x3e (0x57c2fe in /usr/bin/python3)
frame #31: _PyEval_EvalFrameDefault + 0x1851 (0x4facb1 in /usr/bin/python3)
frame #32: /usr/bin/python3() [0x4f6128]
frame #33: _PyFunction_FastCallDict + 0x2fe (0x4f426e in /usr/bin/python3)
frame #34: /usr/bin/python3() [0x5a1481]
frame #35: PyObject_Call + 0x3e (0x57c2fe in /usr/bin/python3)
frame #36: /usr/bin/python3() [0x513601]
frame #37: PyObject_Call + 0x3e (0x57c2fe in /usr/bin/python3)
frame #38: _PyEval_EvalFrameDefault + 0x1851 (0x4facb1 in /usr/bin/python3)
frame #39: /usr/bin/python3() [0x4f6128]
frame #40: _PyFunction_FastCallDict + 0x2fe (0x4f426e in /usr/bin/python3)
frame #41: /usr/bin/python3() [0x5a1481]
frame #42: PyObject_Call + 0x3e (0x57c2fe in /usr/bin/python3)
frame #43: _PyEval_EvalFrameDefault + 0x1851 (0x4facb1 in /usr/bin/python3)
frame #44: /usr/bin/python3() [0x4f6128]
frame #45: _PyFunction_FastCallDict + 0x2fe (0x4f426e in /usr/bin/python3)
frame #46: /usr/bin/python3() [0x5a1481]
frame #47: PyObject_Call + 0x3e (0x57c2fe in /usr/bin/python3)
frame #48: /usr/bin/python3() [0x513601]
frame #49: PyObject_Call + 0x3e (0x57c2fe in /usr/bin/python3)
frame #50: _PyEval_EvalFrameDefault + 0x1851 (0x4facb1 in /usr/bin/python3)
frame #51: /usr/bin/python3() [0x4f6128]
frame #52: /usr/bin/python3() [0x4f7d60]
frame #53: /usr/bin/python3() [0x4f876d]
frame #54: _PyEval_EvalFrameDefault + 0x1260 (0x4fa6c0 in /usr/bin/python3)
frame #55: /usr/bin/python3() [0x4f7a28]
frame #56: /usr/bin/python3() [0x4f876d]
frame #57: _PyEval_EvalFrameDefault + 0x467 (0x4f98c7 in /usr/bin/python3)
frame #58: /usr/bin/python3() [0x4f6128]
frame #59: /usr/bin/python3() [0x4f7d60]
frame #60: /usr/bin/python3() [0x4f876d]
frame #61: _PyEval_EvalFrameDefault + 0x467 (0x4f98c7 in /usr/bin/python3)
frame #62: /usr/bin/python3() [0x4f6128]
frame #63: /usr/bin/python3() [0x4f7d60]
Issue Analytics
- State:
- Created 4 years ago
- Comments:64 (2 by maintainers)
Top Results From Across the Web
Converting a PyTorch YOLACT Model
Export the model to ONNX format. Apply the YOLACT_onnx_export.patch patch to the repository. Refer to the Create a Patch File instructions if you...
Read more >Convert PyTorch Model to ONNX Model - Documentation
General Steps. To convert a PyTorch model to an ONNX model, you need both the PyTorch model and the source code that generates...
Read more >Convert your PyTorch training model to ONNX - Microsoft Learn
How to Convert your PyTorch model to the ONNX model format, to integrate with a Windows ML app.
Read more >Convert Pytorch Yolact (.pth) model for deployment in C++
onnx converted model from yolact.pth. So my issue is I don't really understand what to do next to deploy it using C++. Should...
Read more >onnx2tf - PyPI
Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose ...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
The environment I used: onnx 1.4.1 onnxruntime 0.4.0 torch 1.0.1 torchvision 0.2.1
Run
python eval.py --trained_model=weights/yolact_darknet53_54_800000.pth --score_threshold=0.3 --top_k=100 --cuda=False --image=dog.jpg
to generate onnx file. And runpython onnxeval.py --trained_model=weights/yolact_resnet50_54_800000.pth --score_threshold=0.3 --top_k=100 --cuda=False --image=dog.jpg
to evaluate with onnx.@JING switch to branch onnx. =)