question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

TVM device_type need to be 1 Error

See original GitHub issue
import numpy as np
import nnvm.compiler
import nnvm.testing
import tvm
from tvm.contrib import graph_runtime
import mxnet as mx
from mxnet import ndarray as nd

ctx = tvm.gpu()
# load the module back.
data_shape = (1,3,112,112)
loaded_json = open("./model_gpu_tvm_mobile.json").read()
loaded_lib = tvm.module.load("./model_gpu_tvm_mobile.so")
loaded_params = bytearray(open("./model_gpu_tvm_mobile.params", "rb").read())

input_data = tvm.nd.array(np.random.uniform(size=data_shape).astype("float32"))

module = graph_runtime.create(loaded_json, loaded_lib, ctx)
module.load_params(loaded_params)

# Tiny benchmark test.
import time
for i in range(100):
   t0 = time.time()
   module.run(data=input_data)
   print(time.time() - t0)
python3 mobile_model_gpu.py 
Traceback (most recent call last):
  File "mobile_model_gpu.py", line 25, in <module>
    module.run(data=input_data)
  File "/opt/github/tvm/python/tvm/contrib/graph_runtime.py", line 151, in run
    self._run()
  File "/opt/github/tvm/python/tvm/_ffi/_ctypes/function.py", line 185, in __call__
    ctypes.byref(ret_val), ctypes.byref(ret_tcode)))
  File "/opt/github/tvm/python/tvm/_ffi/base.py", line 71, in check_call
    raise TVMError(py_str(_LIB.TVMGetLastError()))
tvm._ffi.base.TVMError: [12:44:07] /opt/github/tvm/src/runtime/module_util.cc:53: Check failed: ret == 0 (-1 vs. 0) Assert fail: (dev_type == 1), device_type need to be 1

Stack trace returned 10 entries:
[bt] (0) /usr/local/lib/libtvm.so(+0x73859d) [0x7f6f0f47359d]
[bt] (1) /usr/local/lib/libtvm.so(+0xe746f3) [0x7f6f0fbaf6f3]
[bt] (2) /usr/local/lib/libtvm.so(+0xeb3767) [0x7f6f0fbee767]
[bt] (3) /usr/local/lib/libtvm.so(+0xeb1b17) [0x7f6f0fbecb17]
[bt] (4) /usr/local/lib/libtvm.so(TVMFuncCall+0x5e) [0x7f6f0fb991ee]
[bt] (5) /usr/lib/python3.5/lib-dynload/_ctypes.cpython-35m-x86_64-linux-gnu.so(ffi_call_unix64+0x4c) [0x7f6f1499ce20]
[bt] (6) /usr/lib/python3.5/lib-dynload/_ctypes.cpython-35m-x86_64-linux-gnu.so(ffi_call+0x2eb) [0x7f6f1499c88b]
[bt] (7) /usr/lib/python3.5/lib-dynload/_ctypes.cpython-35m-x86_64-linux-gnu.so(_ctypes_callproc+0x49a) [0x7f6f1499701a]
[bt] (8) /usr/lib/python3.5/lib-dynload/_ctypes.cpython-35m-x86_64-linux-gnu.so(+0x9fcb) [0x7f6f1498afcb]
[bt] (9) python3(PyObject_Call+0x47) [0x5c20e7]

Issue Analytics

  • State:closed
  • Created 5 years ago
  • Comments:5 (1 by maintainers)

github_iconTop GitHub Comments

5reactions
LCorleonecommented, Mar 22, 2019

@Arjun8900 if you want to compile gpu model change target = tvm.target.create("llvm -mcpu=haswell") to target = tvm.target.cuda("llvm device=0")

0reactions
Arjun8900commented, Mar 22, 2019

@mdv3101 How did you solve it?

Read more comments on GitHub >

github_iconTop Results From Across the Web

[TE Compiler] Device type error in UpdateMainWorkspaceSize ...
I have no idea why the TE compiler is looking for llvm in 0 instead of 1 . The most weird thing is,...
Read more >
Error when I try to run the function: device_type need to be 4
Hi, I am moving my firsts steps in tvm, and I have this code I am using to optimize a reduction: @autotvm.template def...
Read more >
tvm.runtime — tvm 0.11.dev0 documentation - Apache TVM
Construct a TVM device with given device type and id. cpu ([dev_id]) ... b – True if module (or one of its imports)...
Read more >
Error Handling Guide — tvm 0.11.dev0 documentation
TVM contains structured error classes to indicate specific types of error. Please raise a specific error type when possible, so that users can...
Read more >
tvm.target — tvm 0.11.dev0 documentation - Apache TVM
Returns the device_type for this target. list_kinds () ... Not all allowed cpu str will be valid, LLVM will throw an error.
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found