question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

RLLib example not using conv as configured

See original GitHub issue

While convolutions are specified in the RLLib example the actual models that are spawned are LSTM+FC only.

The configuration in https://github.com/deepmind/meltingpot/blob/main/examples/rllib/self_play_train.py:

    config["model"]["conv_filters"] = [[16, [8, 8], 8], [128, [11, 11], 1]]
    config["model"]["conv_activation"] = "relu"

The log of the architecture of one agent:

(RolloutWorker pid=287877) Model: "model_9"
(RolloutWorker pid=287877) __________________________________________________________________________________________________
(RolloutWorker pid=287877)  Layer (type)                   Output Shape         Param #     Connected to                     
(RolloutWorker pid=287877) ==================================================================================================
(RolloutWorker pid=287877)  seq_in (InputLayer)            [(None,)]            0           []                               
(RolloutWorker pid=287877)                                                                                                   
(RolloutWorker pid=287877)  tf_op_layer_av_wk1/SequenceMas  [()]                0           ['seq_in[0][0]']                 
(RolloutWorker pid=287877)  k/Max (TensorFlowOpLayer)                                                                        
(RolloutWorker pid=287877)                                                                                                   
(RolloutWorker pid=287877)  tf_op_layer_av_wk1/SequenceMas  [()]                0           ['tf_op_layer_av_wk1/SequenceMask
(RolloutWorker pid=287877)  k/Maximum (TensorFlowOpLayer)                                   /Max[0][0]']                     
(RolloutWorker pid=287877)                                                                                                   
(RolloutWorker pid=287877)  tf_op_layer_av_wk1/SequenceMas  [(None, 1)]         0           ['seq_in[0][0]']                 
(RolloutWorker pid=287877)  k/ExpandDims (TensorFlowOpLaye                                                                   
(RolloutWorker pid=287877)  r)                                                                                               
(RolloutWorker pid=287877)                                                                                                   
(RolloutWorker pid=287877)  tf_op_layer_av_wk1/SequenceMas  [(None,)]           0           ['tf_op_layer_av_wk1/SequenceMask
(RolloutWorker pid=287877)  k/Range (TensorFlowOpLayer)                                     /Maximum[0][0]']                 
(RolloutWorker pid=287877)                                                                                                   
(RolloutWorker pid=287877)  tf_op_layer_av_wk1/SequenceMas  [(None, 1)]         0           ['tf_op_layer_av_wk1/SequenceMask
(RolloutWorker pid=287877)  k/Cast (TensorFlowOpLayer)                                      /ExpandDims[0][0]']              
(RolloutWorker pid=287877)                                                                                                   
(RolloutWorker pid=287877)  inputs (InputLayer)            [(None, None, 267)]  0           []                               
(RolloutWorker pid=287877)                                                                                                   
(RolloutWorker pid=287877)  h (InputLayer)                 [(None, 256)]        0           []                               
(RolloutWorker pid=287877)                                                                                                   
(RolloutWorker pid=287877)  c (InputLayer)                 [(None, 256)]        0           []                               
(RolloutWorker pid=287877)                                                                                                   
(RolloutWorker pid=287877)  tf_op_layer_av_wk1/SequenceMas  [(None, None)]      0           ['tf_op_layer_av_wk1/SequenceMask
(RolloutWorker pid=287877)  k/Less (TensorFlowOpLayer)                                      /Range[0][0]',                   
(RolloutWorker pid=287877)                                                                   'tf_op_layer_av_wk1/SequenceMask
(RolloutWorker pid=287877)                                                                  /Cast[0][0]']                    
(RolloutWorker pid=287877)                                                                                                   
(RolloutWorker pid=287877)  lstm (LSTM)                    [(None, None, 256),  536576      ['inputs[0][0]',                 
(RolloutWorker pid=287877)                                  (None, 256),                     'h[0][0]',                      
(RolloutWorker pid=287877)                                  (None, 256)]                     'c[0][0]',                      
(RolloutWorker pid=287877)                                                                   'tf_op_layer_av_wk1/SequenceMask
(RolloutWorker pid=287877)                                                                  /Less[0][0]']                    
(RolloutWorker pid=287877)                                                                                                   
(RolloutWorker pid=287877)  logits (Dense)                 (None, None, 11)     2827        ['lstm[0][0]']                   
(RolloutWorker pid=287877)                                                                                                   
(RolloutWorker pid=287877)  values (Dense)                 (None, None, 1)      257         ['lstm[0][0]']                   
(RolloutWorker pid=287877)                                                                                                   
(RolloutWorker pid=287877) ==================================================================================================
(RolloutWorker pid=287877) Total params: 539,660
(RolloutWorker pid=287877) Trainable params: 539,660
(RolloutWorker pid=287877) Non-trainable params: 0
(RolloutWorker pid=287877) __________________________________________________________________________________________________
(RolloutWorker pid=287877)   ...

I think that this is caused by how the observation spaces are flattened in RLLib.

pip freeze
absl-py==1.0.0
aiohttp==3.8.1
aiohttp-cors==0.7.0
aioredis==1.3.1
aiosignal==1.2.0
astunparse==1.6.3
async-timeout==4.0.2
attrs==21.4.0
blessed==1.19.1
cachetools==5.0.0
certifi==2021.10.8
charset-normalizer==2.0.12
chex==0.1.1
click==8.0.4
cloudpickle==2.0.0
colorful==0.5.4
contextlib2==21.6.0
cycler==0.11.0
Deprecated==1.2.13
dm-env==1.5
-e git+https://github.com/deepmind/meltingpot@79f8756389d590c2b965de37c9b54cdf8679f7a7#egg=dm_meltingpot
dm-tree==0.1.6
dmlab2d @ https://github.com/deepmind/lab2d/releases/download/release_candidate_2021-07-13/dmlab2d-1.0-cp39-cp39-manylinux_2_31_x86_64.whl
filelock==3.6.0
flatbuffers==2.0
fonttools==4.30.0
frozenlist==1.3.0
gast==0.5.3
google-api-core==2.7.1
google-auth==2.6.0
google-auth-oauthlib==0.4.6
google-pasta==0.2.0
googleapis-common-protos==1.55.0
gpustat==1.0.0b1
grpcio==1.43.0
gym==0.21.0
h5py==3.6.0
hiredis==2.0.0
idna==3.3
imageio==2.16.1
immutabledict==2.2.1
importlib-metadata==4.11.3
jax==0.3.1
jaxlib==0.3.0
jsonschema==4.4.0
keras==2.8.0
Keras-Preprocessing==1.1.2
kiwisolver==1.4.0
libclang==13.0.0
lz4==4.0.0
Markdown==3.3.6
matplotlib==3.5.1
ml-collections==0.1.1
msgpack==1.0.3
multidict==6.0.2
networkx==2.7.1
nose==1.3.7
numpy==1.22.3
nvidia-ml-py3==7.352.0
oauthlib==3.2.0
opencensus==0.8.0
opencensus-context==0.1.2
opt-einsum==3.3.0
packaging==21.3
pandas==1.4.1
Pillow==9.0.1
prometheus-client==0.13.1
protobuf==3.19.4
psutil==5.9.0
py-spy==0.3.11
pyasn1==0.4.8
pyasn1-modules==0.2.8
pygame==2.1.2
pyparsing==3.0.7
pyrsistent==0.18.1
python-dateutil==2.8.2
pytz==2021.3
PyWavelets==1.3.0
PyYAML==6.0
ray==1.11.0
redis==4.1.4
requests==2.27.1
requests-oauthlib==1.3.1
rsa==4.8
Rx==3.2.0
scikit-image==0.19.2
scipy==1.8.0
six==1.16.0
smart-open==5.2.1
tabulate==0.8.9
tensorboard==2.8.0
tensorboard-data-server==0.6.1
tensorboard-plugin-wit==1.8.1
tensorboardX==2.5
tensorflow==2.8.0
tensorflow-io-gcs-filesystem==0.24.0
termcolor==1.1.0
tf-estimator-nightly==2.8.0.dev2021122109
tifffile==2022.2.9
toolz==0.11.2
typing_extensions==4.1.1
urllib3==1.26.8
wcwidth==0.2.5
Werkzeug==2.0.3
wrapt==1.14.0
yarl==1.7.2
zipp==3.7.0

Issue Analytics

  • State:closed
  • Created 2 years ago
  • Comments:5

github_iconTop GitHub Comments

1reaction
jzleibocommented, Mar 15, 2022

Good catch! Do you know how to fix it? Could you show us how? None of us are experts on RLLib…

0reactions
Manuscritcommented, Apr 14, 2022

Does RLlib automatically infer that it must do that concatenation and feed the LSTM network as describes above ?

Yes

Read more comments on GitHub >

github_iconTop Results From Across the Web

Models, Preprocessors, and Action Distributions — Ray 2.2.0
Example : # Use None for making RLlib try to find a default filter setup given the # observation space. "conv_filters": None, #...
Read more >
How to specify conv_filters when using a custom obs shape?
When I try to run my train script without specifying the conv_filters I receive this error: ValueError: No default configuration for obs shape...
Read more >
ray/visionnet.py at master · ray-project/ray - rllib - GitHub
"""Generic vision network implemented in ModelV2 API. An additional post-conv fully connected stack can be added and configured. via the ...
Read more >
Reinforcement Learning with RLLib - Griddly Docs
Some examples may be modified to work with Tensorflow, but we do not provide explicit support for Tensorflow. Examples Setup . Griddly installs...
Read more >
Action Masking with RLlib - DataHubbs
Action masking is powerful, but not straightforward with Ray/RLlib. Here we walk through a simple example to verify correct implementation.
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found