question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

Error while trying to get the probablities of the predicted entities using ontonotes_bert ner model

See original GitHub issue

Deeppavlov version: 0.12.1 Python version: 3.7.7 "return_probas"set to true in ner_ontonotes_bert config json Command: python -m deeppavlov interact F:\miniconda3\envs\ute_query_params_service\Lib\site-packages\deeppavlov\configs\ner\ner_ontonotes_bert.js Command string: London is in England. Full Traceback: [nltk_data] Downloading package punkt to [nltk_data] C:\Users\User\AppData\Roaming\nltk_data… [nltk_data] Package punkt is already up-to-date! [nltk_data] Downloading package stopwords to [nltk_data] C:\Users\User\AppData\Roaming\nltk_data… [nltk_data] Package stopwords is already up-to-date! [nltk_data] Downloading package perluniprops to [nltk_data] C:\Users\User\AppData\Roaming\nltk_data… [nltk_data] Package perluniprops is already up-to-date! [nltk_data] Downloading package nonbreaking_prefixes to [nltk_data] C:\Users\User\AppData\Roaming\nltk_data… [nltk_data] Package nonbreaking_prefixes is already up-to-date! WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\bert_dp\tokenization.py:125: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.

2020-11-30 21:37:31.122 INFO in ‘deeppavlov.core.data.simple_vocab’[‘simple_vocab’] at line 115: [loading vocabulary from C:\Users\User.deeppavlov\models\ner_ontonotes_bert\tag.dict] WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:37: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.

WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:222: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:222: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.

WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:193: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.

WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\models\bert\bert_sequence_tagger.py:236: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.

WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\models\bert\bert_sequence_tagger.py:314: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead.

WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\bert_dp\modeling.py:178: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead.

WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\bert_dp\modeling.py:418: The name tf.get_variable is deprecated. Please use tf.compat.v1.get_variable instead.

WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\bert_dp\modeling.py:499: The name tf.assert_less_equal is deprecated. Please use tf.compat.v1.assert_less_equal instead.

WARNING:tensorflow: The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see:

WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\bert_dp\modeling.py:366: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version. Instructions for updating: Please use rate instead of keep_prob. Rate should be set to rate = 1 - keep_prob. WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\bert_dp\modeling.py:680: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.Dense instead. WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\tensorflow_core\python\layers\core.py:187: Layer.apply (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version. Instructions for updating: Please use layer.__call__ method instead. WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\bert_dp\modeling.py:283: The name tf.erf is deprecated. Please use tf.math.erf instead.

WARNING:tensorflow:Variable *= will be deprecated. Use var.assign(var * other) if you want assignment to the variable value or x = x * y if you want a new python Tensor object. WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\models\bert\bert_sequence_tagger.py:75: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.where in 2.0, which has the same broadcast rule as np.where WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\tensorflow_core\contrib\crf\python\ops\crf.py:213: dynamic_rnn (from tensorflow.python.ops.rnn) is deprecated and will be removed in a future version. Instructions for updating: Please use keras.layers.RNN(cell), which is equivalent to this API WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:234: The name tf.train.AdadeltaOptimizer is deprecated. Please use tf.compat.v1.train.AdadeltaOptimizer instead.

WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:131: The name tf.get_collection is deprecated. Please use tf.compat.v1.get_collection instead.

WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:131: The name tf.GraphKeys is deprecated. Please use tf.compat.v1.GraphKeys instead.

WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:94: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.

WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\tensorflow_core\python\training\moving_averages.py:433: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\models\bert\bert_sequence_tagger.py:671: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead.

WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\models\bert\bert_sequence_tagger.py:244: The name tf.global_variables_initializer is deprecated. Please use tf.compat.v1.global_variables_initializer instead.

WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\models\bert\bert_sequence_tagger.py:249: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file APIs to check for files with this prefix. 2020-11-30 21:40:57.982 INFO in ‘deeppavlov.core.models.tf_model’[‘tf_model’] at line 51: [loading model from C:\Users\User.deeppavlov\models\ner_ontonotes_bert\model] WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:54: The name tf.train.Saver is deprecated. Please use tf.compat.v1.train.Saver instead.

x::London is in England. Traceback (most recent call last): File “f:\miniconda3\envs\ute_query_params_service\lib\runpy.py”, line 193, in _run_module_as_main “main”, mod_spec) File “f:\miniconda3\envs\ute_query_params_service\lib\runpy.py”, line 85, in run_code exec(code, run_globals) File "f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov_main.py", line 4, in <module> main() File “f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\deep.py”, line 89, in main interact_model(pipeline_config_path) File “f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\commands\infer.py”, line 89, in interact_model pred = model(*args) File “f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\common\chainer.py”, line 207, in call return self._compute(*args, param_names=self.in_x, pipe=self.pipe, targets=self.out_params) File “f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\common\chainer.py”, line 230, in _compute res = component.call(*x) File “f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\data\simple_vocab.py”, line 92, in call looked_up_batch = [self(sample, is_top=False) for sample in batch] File “f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\data\simple_vocab.py”, line 92, in <listcomp> looked_up_batch = [self(sample, is_top=False) for sample in batch] File “f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\data\simple_vocab.py”, line 92, in call looked_up_batch = [self(sample, is_top=False) for sample in batch] File “f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\data\simple_vocab.py”, line 92, in <listcomp> looked_up_batch = [self(sample, is_top=False) for sample in batch] File “f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\data\simple_vocab.py”, line 92, in call looked_up_batch = [self(sample, is_top=False) for sample in batch] File “f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\data\simple_vocab.py”, line 92, in <listcomp> looked_up_batch = [self(sample, is_top=False) for sample in batch] File “f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\data\simple_vocab.py”, line 94, in call return self[batch] File “f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\data\simple_vocab.py”, line 161, in getitem raise NotImplementedError(“not implemented for type {}”.format(type(key))) NotImplementedError: not implemented for type <class 'numpy.float32'>

I would like to get the probablities of predicted entities. Is return_probas is the way to go? Please help. Thanks in advance.

  • Ravishankar

Issue Analytics

  • State:closed
  • Created 3 years ago
  • Comments:20 (7 by maintainers)

github_iconTop GitHub Comments

1reaction
yurakuratovcommented, Dec 7, 2020

Hi!

You also need to remove the last component from pipe, which converts label indices to actual labels.

{
        "ref": "tag_vocab",
        "in": ["y_pred_ind"],
        "out": ["y_pred"]
}

and change chainer out section "out": ["x_tokens", "y_pred"] -> "out": ["x_tokens", "y_pred_ind"] As result, model will return tokens and labels probabilities for each token. Order of labels probabilities is the same as in labels vocabulary: https://github.com/deepmipt/DeepPavlov/blob/c10b079b972493220c82a643d47d718d5358c7f4/deeppavlov/configs/ner/ner_ontonotes_bert.json#L30

0reactions
ravishpankarcommented, Feb 8, 2021

@danielkornev , I can get the labels and probabilities. I’m getting an error while training the trained model after extending the train.txt dataset with my sample. Thanks a lot Daniel and Yura. It was really instructive and helpful. You may want to close this one.

Read more comments on GitHub >

github_iconTop Results From Across the Web

Error while trying to get the probablities of the ... - GitHub
"return_probas"set to true in ner_ontonotes_bert config json ... Is it possible to train the ner ontonotes bert model incrementally?
Read more >
Named Entity Recognition - BERT Large (OntoNotes)
This model uses the pretrained bert_large_cased embeddings model from the BertEmbeddings annotator as an input. Predicted Entities. CARDINAL , ...
Read more >
arXiv:2101.11122v1 [cs.CL] 26 Jan 2021
In this work, we propose a two-stage method for named entity recognition (NER), espe- cially for nested NER. We borrowed the idea.
Read more >
A Noise-Robust Loss for Unlabeled Entity Problem in Named ...
In many scenarios, named entity recognition (NER) models severely suffer. ... A softmax function is then to get the probabilities over all ...
Read more >
Continual Learning for Named Entity Recognition
Named Entity Recognition (NER) is a vital task in various. NLP applications. However, in many ... and simpler model to make similar but...
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found