[Bug] Spleeter error running in Python (Anaconda/Windows/CUDA/Visual/Tensorflow/GPU accelerated)
See original GitHub issueDescription
I tried to run spleeter from python using the sourcecode below. When running spleeter separate -i D:\SAE\Producties\PsyTrain\Kadoc.flac -o D:\SAE\ProductiesPsyTrain\5stems\ -p spleeter:5stems I get error reports and no stems are separated. Note: Spleeter used to work just fine on this install.
Step to reproduce
-
Installed using
pip install spleeter
Installed Visual/CUDA/Tensorflow/GPU -
Run as
.spleeter separate -i D:\SAE\Producties\PsyTrain\Kadoc.flac -o D:\SAE\ProductiesPsyTrain\5stems\ -p spleeter:5stems
-
Got `tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found. (0) Resource exhausted: OOM when allocating tensor with shape[32,16,256,512] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node conv2d_transpose_28/conv2d_transpose}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
[[strided_slice_48/_757]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
(1) Resource exhausted: OOM when allocating tensor with shape[32,16,256,512] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node conv2d_transpose_28/conv2d_transpose}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
0 successful operations. 0 derived errors ignored.
During handling of the above exception, another exception occurred:
Traceback (most recent call last): File “C:\Users\sande\Anaconda3\Scripts\spleeter-script.py”, line 9, in <module> sys.exit(entrypoint()) File “C:\Users\sande\Anaconda3\lib\site-packages\spleeter_main_.py”, line 54, in entrypoint main(sys.argv) File “C:\Users\sande\Anaconda3\lib\site-packages\spleeter_main_.py”, line 46, in main entrypoint(arguments, params) File “C:\Users\sande\Anaconda3\lib\site-packages\spleeter\commands\separate.py”, line 43, in entrypoint synchronous=False File “C:\Users\sande\Anaconda3\lib\site-packages\spleeter\separator.py”, line 123, in separate_to_file sources = self.separate(waveform) File “C:\Users\sande\Anaconda3\lib\site-packages\spleeter\separator.py”, line 89, in separate ‘audio_id’: ‘’}) File “C:\Users\sande\Anaconda3\lib\site-packages\tensorflow\contrib\predictor\predictor.py”, line 77, in call return self._session.run(fetches=self.fetch_tensors, feed_dict=feed_dict) File “C:\Users\sande\Anaconda3\lib\site-packages\tensorflow\python\client\session.py”, line 950, in run run_metadata_ptr) File “C:\Users\sande\Anaconda3\lib\site-packages\tensorflow\python\client\session.py”, line 1173, in _run feed_dict_tensor, options, run_metadata) File “C:\Users\sande\Anaconda3\lib\site-packages\tensorflow\python\client\session.py”, line 1350, in _do_run run_metadata) File “C:\Users\sande\Anaconda3\lib\site-packages\tensorflow\python\client\session.py”, line 1370, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found. (0) Resource exhausted: OOM when allocating tensor with shape[32,16,256,512] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[node conv2d_transpose_28/conv2d_transpose (defined at \lib\site-packages\spleeter\utils\estimator.py:71) ]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
[[strided_slice_48/_757]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
(1) Resource exhausted: OOM when allocating tensor with shape[32,16,256,512] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[node conv2d_transpose_28/conv2d_transpose (defined at \lib\site-packages\spleeter\utils\estimator.py:71) ]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
0 successful operations. 0 derived errors ignored.` error
Output
Traceback (most recent call last):
File "C:\Users\sande\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1356, in _do_call
return fn(*args)
File "C:\Users\sande\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1341, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "C:\Users\sande\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1429, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found.
(0) Resource exhausted: OOM when allocating tensor with shape[32,16,256,512] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[{{node conv2d_transpose_28/conv2d_transpose}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
[[strided_slice_48/_757]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
(1) Resource exhausted: OOM when allocating tensor with shape[32,16,256,512] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[{{node conv2d_transpose_28/conv2d_transpose}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
0 successful operations.
0 derived errors ignored.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "C:\Users\sande\Anaconda3\Scripts\spleeter-script.py", line 9, in <module>
sys.exit(entrypoint())
File "C:\Users\sande\Anaconda3\lib\site-packages\spleeter\__main__.py", line 54, in entrypoint
main(sys.argv)
File "C:\Users\sande\Anaconda3\lib\site-packages\spleeter\__main__.py", line 46, in main
entrypoint(arguments, params)
File "C:\Users\sande\Anaconda3\lib\site-packages\spleeter\commands\separate.py", line 43, in entrypoint
synchronous=False
File "C:\Users\sande\Anaconda3\lib\site-packages\spleeter\separator.py", line 123, in separate_to_file
sources = self.separate(waveform)
File "C:\Users\sande\Anaconda3\lib\site-packages\spleeter\separator.py", line 89, in separate
'audio_id': ''})
File "C:\Users\sande\Anaconda3\lib\site-packages\tensorflow\contrib\predictor\predictor.py", line 77, in __call__
return self._session.run(fetches=self.fetch_tensors, feed_dict=feed_dict)
File "C:\Users\sande\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 950, in run
run_metadata_ptr)
File "C:\Users\sande\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1173, in _run
feed_dict_tensor, options, run_metadata)
File "C:\Users\sande\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1350, in _do_run
run_metadata)
File "C:\Users\sande\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1370, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found.
(0) Resource exhausted: OOM when allocating tensor with shape[32,16,256,512] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node conv2d_transpose_28/conv2d_transpose (defined at \lib\site-packages\spleeter\utils\estimator.py:71) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
[[strided_slice_48/_757]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
(1) Resource exhausted: OOM when allocating tensor with shape[32,16,256,512] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node conv2d_transpose_28/conv2d_transpose (defined at \lib\site-packages\spleeter\utils\estimator.py:71) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
0 successful operations.
0 derived errors ignored.
Original stack trace for 'conv2d_transpose_28/conv2d_transpose':
File "\Scripts\spleeter-script.py", line 9, in <module>
sys.exit(entrypoint())
File "\lib\site-packages\spleeter\__main__.py", line 54, in entrypoint
main(sys.argv)
File "\lib\site-packages\spleeter\__main__.py", line 46, in main
entrypoint(arguments, params)
File "\lib\site-packages\spleeter\commands\separate.py", line 43, in entrypoint
synchronous=False
File "\lib\site-packages\spleeter\separator.py", line 123, in separate_to_file
sources = self.separate(waveform)
File "\lib\site-packages\spleeter\separator.py", line 86, in separate
predictor = self._get_predictor()
File "\lib\site-packages\spleeter\separator.py", line 58, in _get_predictor
self._predictor = to_predictor(estimator)
File "\lib\site-packages\spleeter\utils\estimator.py", line 71, in to_predictor
return predictor.from_saved_model(latest)
File "\lib\site-packages\tensorflow\contrib\predictor\predictor_factories.py", line 153, in from_saved_model
config=config)
File "\lib\site-packages\tensorflow\contrib\predictor\saved_model_predictor.py", line 153, in __init__
loader.load(self._session, tags.split(','), export_dir)
File "\lib\site-packages\tensorflow\python\util\deprecation.py", line 324, in new_func
return func(*args, **kwargs)
File "\lib\site-packages\tensorflow\python\saved_model\loader_impl.py", line 269, in load
return loader.load(sess, tags, import_scope, **saver_kwargs)
File "\lib\site-packages\tensorflow\python\saved_model\loader_impl.py", line 422, in load
**saver_kwargs)
File "\lib\site-packages\tensorflow\python\saved_model\loader_impl.py", line 352, in load_graph
meta_graph_def, import_scope=import_scope, **saver_kwargs)
File "\lib\site-packages\tensorflow\python\training\saver.py", line 1473, in _import_meta_graph_with_return_elements
**kwargs))
File "\lib\site-packages\tensorflow\python\framework\meta_graph.py", line 857, in import_scoped_meta_graph_with_return_elements
return_elements=return_elements)
File "\lib\site-packages\tensorflow\python\util\deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "\lib\site-packages\tensorflow\python\framework\importer.py", line 443, in import_graph_def
_ProcessNewOps(graph)
File "\lib\site-packages\tensorflow\python\framework\importer.py", line 236, in _ProcessNewOps
for new_op in graph._add_new_tf_operations(compute_devices=False): # pylint: disable=protected-access
File "\lib\site-packages\tensorflow\python\framework\ops.py", line 3751, in _add_new_tf_operations
for c_op in c_api_util.new_tf_operations(self)
File "\lib\site-packages\tensorflow\python\framework\ops.py", line 3751, in <listcomp>
for c_op in c_api_util.new_tf_operations(self)
File "\lib\site-packages\tensorflow\python\framework\ops.py", line 3641, in _create_op_from_tf_operation
ret = Operation(c_op, self)
File "\lib\site-packages\tensorflow\python\framework\ops.py", line 2005, in __init__
self._traceback = tf_stack.extract_stack()
Environment
OS | Windows 10 |
Installation type | Conda / pip / |
RAM available | 16 |
Hardware spec | NVIDIA GeForce GTX 1060 / i7-8750H / etc … |
Additional context
I performed a clean install from GitHub before and also installed support for hardware accelleration via GPU for Spleeter, which also has worked fine before today.
Issue Analytics
- State:
- Created 4 years ago
- Comments:9
1
Hi @Epemaster
An OOM error like yours indicate that the file you’re processing is too large to fit into your memory. You may want to split your file into smaller pieces of, say 1min each and process them separately.
@aidv the
python -m spleeter
trick is only a solution for the unknownspleeter
command issue as explained in the FAQ. it won’t solve other types of problems