Blur view of reacher pybullet env
See original GitHub issueI trained the ReacherBulletEnv-v0 using this repository, but when I run the enjoy.py file, I get a very blur environment. How to correct this?
The config and version of packages in my environment are given below:
Package Version
------------------------------ -------------------
absl-py 0.11.0
alembic 1.4.3
astroid 2.4.2
astunparse 1.6.3
atari-py 0.2.6
attrs 20.3.0
azure 1.0.3
azure-common 1.1.26
azure-mgmt 0.20.2
azure-mgmt-common 0.20.0
azure-mgmt-compute 0.20.1
azure-mgmt-network 0.20.1
azure-mgmt-nspkg 3.0.2
azure-mgmt-resource 0.20.1
azure-mgmt-storage 0.20.0
azure-nspkg 3.0.2
azure-servicebus 0.20.1
azure-servicemanagement-legacy 0.20.2
azure-storage 0.20.3
backcall 0.2.0
baselines 0.1.4
cachetools 4.1.1
certifi 2020.6.20
cffi 1.14.3
chardet 3.0.4
click 7.1.2
cliff 3.5.0
cloudpickle 1.6.0
cmaes 0.7.0
cmd2 1.4.0
colorama 0.4.4
colorlog 4.6.2
cycler 0.10.0
Cython 0.29.21
dataclasses 0.6
decorator 4.4.2
dill 0.3.3
future 0.18.2
gast 0.3.3
glfw 2.0.0
google-auth 1.23.0
google-auth-oauthlib 0.4.2
google-pasta 0.2.0
grpcio 1.33.2
gym 0.17.3
h5py 2.10.0
idna 2.10
imageio 2.9.0
iniconfig 1.1.1
ipdb 0.13.4
ipython 7.18.1
ipython-genutils 0.2.0
isort 5.5.4
jedi 0.17.2
joblib 0.17.0
Keras-Preprocessing 1.1.2
kiwisolver 1.2.0
lazy-object-proxy 1.4.3
llvmlite 0.34.0
lockfile 0.12.2
Mako 1.1.3
Markdown 3.3.3
MarkupSafe 1.1.1
matplotlib 3.3.2
mccabe 0.6.1
more-itertools 8.5.0
mpi4py 3.0.3
numba 0.51.2
numpy 1.19.2
oauthlib 3.1.0
opencv-python 4.4.0.44
opt-einsum 3.3.0
optuna 2.3.0
packaging 20.7
pandas 1.1.2
parso 0.7.1
pbr 5.5.1
pexpect 4.8.0
pickleshare 0.7.5
Pillow 7.2.0
pip 20.2.2
pluggy 0.13.1
prettytable 0.7.2
progressbar2 3.53.1
prompt-toolkit 3.0.8
protobuf 3.13.0
psutil 5.7.3
ptyprocess 0.6.0
py 1.9.0
py-dateutil 2.2
pyarrow 2.0.0
pyasn1 0.4.8
pyasn1-modules 0.2.8
pybullet 3.0.4
pybullet-robot-envs 0.0.1
pycparser 2.20
pyglet 1.5.0
Pygments 2.7.2
pylint 2.6.0
pyparsing 2.4.7
pyperclip 1.8.1
pytest 6.1.2
python-dateutil 2.8.1
python-editor 1.0.4
python-utils 2.4.0
pytz 2020.1
PyYAML 5.3.1
pyzmq 20.0.0
requests 2.25.0
requests-oauthlib 1.3.0
rsa 4.6
scipy 1.5.2
seaborn 0.11.0
setuptools 49.6.0.post20200925
six 1.15.0
SQLAlchemy 1.3.20
stable-baselines 2.10.1
stable-baselines3 0.10.0
stevedore 3.3.0
tensorboard 2.4.0
tensorboard-plugin-wit 1.7.0
tensorboardX 2.1
tensorflow 2.3.1
tensorflow-estimator 2.3.0
termcolor 1.1.0
toml 0.10.1
torch 1.7.0
tqdm 4.51.0
traitlets 5.0.5
typing-extensions 3.7.4.3
urllib3 1.26.2
wcwidth 0.2.5
Werkzeug 1.0.1
wheel 0.35.1
wrapt 1.12.1
zmq 0.0.0
Issue Analytics
- State:
- Created 3 years ago
- Comments:6 (2 by maintainers)
Top Results From Across the Web
Simulate Images for ML in PyBullet — The Quick & Easy Way
This function returns three image buffers: rgbImg, depthImg, and segImg. rgbImg is a uint8 image with red, green, blue, and alpha channels of ......
Read more >Fix Constraint is Not Fixed - Real-Time Physics Simulation ...
I am using pyBullet, so I guess the "JOINT_FIXED" constraint is the same as btFixedConstraints in Bullet. I do not update anything once...
Read more >A visualization of our PyBullet gym environment. The blue ...
Download scientific diagram | A visualization of our PyBullet gym environment. The blue vectors represent the target velocities of each agent, ...
Read more >Learning to Fly -- a Gym Environment with PyBullet Physics for ...
In this paper, we propose an open-source OpenAI Gym-like environment for multiple quadcopters based on the Bullet physics engine. Its multi-agent and vision- ......
Read more >Learning to Fly—a Gym Environment with PyBullet Physics for ...
In this paper, we propose an open-source OpenAI Gym-like environment for multiple quadcopters based on the Bullet physics engine. Its multi- ...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
The blurry image is likely due to the simple cpu TinyRenderer instead of using hardware OpenGL 3. Yes, it is a good idea to call env.render() before the first env.reset(). This is a special feature that enables hardware rendering, since the Gym API has no proper way to add options before starting the env. Can this be made default, if ‘enjoying’ the pybullet environments?
Another option is to run a pybullet server, which will be used for hardware OpenGL rendering in a different terminal, leave it running, and then enjoy the environment/create a video. A PyBullet env will first try to detect such server and connect over shared memory. Don’t resize/close while creating the video.
This is how it should look like (AntBullet-v0), note the reflection and shadows etc:
Also other pybullet envs have some distortion. But I just found out that doing
env.render()
beforeenv.reset()
solves both the weird color and the distortion. The image is still blurry / low quality, but I guess this is only a setting thing. In case the OP is still interested, this is my script: