question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

How to use resnet instead of vgg16

See original GitHub issue

WARNING:tensorflow:From H:\MachineLearning\match\text-detection-ctpn-banjin-dev\text-detection-ctpn-banjin-dev\nets\resnet_v2.py:213: calling reduce_mean (from tensorflow.python.ops.math_ops) with keep_dims is deprecated and will be removed in a future version. Instructions for updating: keep_dims is deprecated, use keepdims instead Traceback (most recent call last): File “./main/train.py”, line 122, in <module> tf.app.run() File “D:\Anaconda\Anaconda3\lib\site-packages\tensorflow\python\platform\app.py”, line 125, in run _sys.exit(main(argv)) File “./main/train.py”, line 49, in main bbox_pred, cls_pred, cls_prob = model.model(input_image) File “H:\MachineLearning\match\text-detection-ctpn-banjin-dev\text-detection-ctpn-banjin-dev\nets\model_train.py”, line 72, in model rpn_conv = slim.conv2d(conv5_3, 512, 3) File “D:\Anaconda\Anaconda3\lib\site-packages\tensorflow\contrib\framework\python\ops\arg_scope.py”, line 183, in func_with_args return func(*args, **current_args) File “D:\Anaconda\Anaconda3\lib\site-packages\tensorflow\contrib\layers\python\layers\layers.py”, line 1154, in convolution2d conv_dims=2) File “D:\Anaconda\Anaconda3\lib\site-packages\tensorflow\contrib\framework\python\ops\arg_scope.py”, line 183, in func_with_args return func(*args, **current_args) File “D:\Anaconda\Anaconda3\lib\site-packages\tensorflow\contrib\layers\python\layers\layers.py”, line 1020, in convolution inputs = ops.convert_to_tensor(inputs) File “D:\Anaconda\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py”, line 998, in convert_to_tensor as_ref=False) File “D:\Anaconda\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py”, line 1094, in internal_convert_to_tensor ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) File “D:\Anaconda\Anaconda3\lib\site-packages\tensorflow\python\ops\array_ops.py”, line 961, in _autopacking_conversion_function return _autopacking_helper(v, inferred_dtype, name or “packed”) File “D:\Anaconda\Anaconda3\lib\site-packages\tensorflow\python\ops\array_ops.py”, line 923, in _autopacking_helper constant_op.constant(elem, dtype=dtype, name=str(i))) File “D:\Anaconda\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py”, line 196, in constant value, dtype=dtype, shape=shape, verify_shape=verify_shape)) File “D:\Anaconda\Anaconda3\lib\site-packages\tensorflow\python\framework\tensor_util.py”, line 436, in make_tensor_proto _AssertCompatible(values, dtype) File “D:\Anaconda\Anaconda3\lib\site-packages\tensorflow\python\framework\tensor_util.py”, line 347, in _AssertCompatible (dtype.name, repr(mismatch), type(mismatch).name)) TypeError: Expected float32, got OrderedDict([(‘resnet_v2_50/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/conv1/BiasAdd:0’ shape=(?, ?, ?, 64) dtype=float32>), (‘resnet_v2_50/block1/unit_1/bottleneck_v2/shortcut’, <tf.Tensor ‘model_0/resnet_v2_50/block1/unit_1/bottleneck_v2/shortcut/BiasAdd:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block1/unit_1/bottleneck_v2/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/block1/unit_1/bottleneck_v2/conv1/Relu:0’ shape=(?, ?, ?, 64) dtype=float32>), (‘resnet_v2_50/block1/unit_1/bottleneck_v2/conv2’, <tf.Tensor ‘model_0/resnet_v2_50/block1/unit_1/bottleneck_v2/conv2/Relu:0’ shape=(?, ?, ?, 64) dtype=float32>), (‘resnet_v2_50/block1/unit_1/bottleneck_v2/conv3’, <tf.Tensor ‘model_0/resnet_v2_50/block1/unit_1/bottleneck_v2/conv3/BiasAdd:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block1/unit_1/bottleneck_v2’, <tf.Tensor ‘model_0/resnet_v2_50/block1/unit_1/bottleneck_v2/add:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block1/unit_2/bottleneck_v2/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/block1/unit_2/bottleneck_v2/conv1/Relu:0’ shape=(?, ?, ?, 64) dtype=float32>), (‘resnet_v2_50/block1/unit_2/bottleneck_v2/conv2’, <tf.Tensor ‘model_0/resnet_v2_50/block1/unit_2/bottleneck_v2/conv2/Relu:0’ shape=(?, ?, ?, 64) dtype=float32>), (‘resnet_v2_50/block1/unit_2/bottleneck_v2/conv3’, <tf.Tensor ‘model_0/resnet_v2_50/block1/unit_2/bottleneck_v2/conv3/BiasAdd:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block1/unit_2/bottleneck_v2’, <tf.Tensor ‘model_0/resnet_v2_50/block1/unit_2/bottleneck_v2/add:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block1/unit_3/bottleneck_v2/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/block1/unit_3/bottleneck_v2/conv1/Relu:0’ shape=(?, ?, ?, 64) dtype=float32>), (‘resnet_v2_50/block1/unit_3/bottleneck_v2/conv2’, <tf.Tensor ‘model_0/resnet_v2_50/block1/unit_3/bottleneck_v2/conv2/Relu:0’ shape=(?, ?, ?, 64) dtype=float32>), (‘resnet_v2_50/block1/unit_3/bottleneck_v2/conv3’, <tf.Tensor ‘model_0/resnet_v2_50/block1/unit_3/bottleneck_v2/conv3/BiasAdd:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block1/unit_3/bottleneck_v2’, <tf.Tensor ‘model_0/resnet_v2_50/block1/unit_3/bottleneck_v2/add:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block1’, <tf.Tensor ‘model_0/resnet_v2_50/block1/unit_3/bottleneck_v2/add:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block2/unit_1/bottleneck_v2/shortcut’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_1/bottleneck_v2/shortcut/BiasAdd:0’ shape=(?, ?, ?, 512) dtype=float32>), (‘resnet_v2_50/block2/unit_1/bottleneck_v2/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_1/bottleneck_v2/conv1/Relu:0’ shape=(?, ?, ?, 128) dtype=float32>), (‘resnet_v2_50/block2/unit_1/bottleneck_v2/conv2’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_1/bottleneck_v2/conv2/Relu:0’ shape=(?, ?, ?, 128) dtype=float32>), (‘resnet_v2_50/block2/unit_1/bottleneck_v2/conv3’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_1/bottleneck_v2/conv3/BiasAdd:0’ shape=(?, ?, ?, 512) dtype=float32>), (‘resnet_v2_50/block2/unit_1/bottleneck_v2’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_1/bottleneck_v2/add:0’ shape=(?, ?, ?, 512) dtype=float32>), (‘resnet_v2_50/block2/unit_2/bottleneck_v2/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_2/bottleneck_v2/conv1/Relu:0’ shape=(?, ?, ?, 128) dtype=float32>), (‘resnet_v2_50/block2/unit_2/bottleneck_v2/conv2’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_2/bottleneck_v2/conv2/Relu:0’ shape=(?, ?, ?, 128) dtype=float32>), (‘resnet_v2_50/block2/unit_2/bottleneck_v2/conv3’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_2/bottleneck_v2/conv3/BiasAdd:0’ shape=(?, ?, ?, 512) dtype=float32>), (‘resnet_v2_50/block2/unit_2/bottleneck_v2’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_2/bottleneck_v2/add:0’ shape=(?, ?, ?, 512) dtype=float32>), (‘resnet_v2_50/block2/unit_3/bottleneck_v2/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_3/bottleneck_v2/conv1/Relu:0’ shape=(?, ?, ?, 128) dtype=float32>), (‘resnet_v2_50/block2/unit_3/bottleneck_v2/conv2’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_3/bottleneck_v2/conv2/Relu:0’ shape=(?, ?, ?, 128) dtype=float32>), (‘resnet_v2_50/block2/unit_3/bottleneck_v2/conv3’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_3/bottleneck_v2/conv3/BiasAdd:0’ shape=(?, ?, ?, 512) dtype=float32>), (‘resnet_v2_50/block2/unit_3/bottleneck_v2’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_3/bottleneck_v2/add:0’ shape=(?, ?, ?, 512) dtype=float32>), (‘resnet_v2_50/block2/unit_4/bottleneck_v2/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_4/bottleneck_v2/conv1/Relu:0’ shape=(?, ?, ?, 128) dtype=float32>), (‘resnet_v2_50/block2/unit_4/bottleneck_v2/conv2’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_4/bottleneck_v2/conv2/Relu:0’ shape=(?, ?, ?, 128) dtype=float32>), (‘resnet_v2_50/block2/unit_4/bottleneck_v2/conv3’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_4/bottleneck_v2/conv3/BiasAdd:0’ shape=(?, ?, ?, 512) dtype=float32>), (‘resnet_v2_50/block2/unit_4/bottleneck_v2’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_4/bottleneck_v2/add:0’ shape=(?, ?, ?, 512) dtype=float32>), (‘resnet_v2_50/block2’, <tf.Tensor ‘model_0/resnet_v2_50/block2/unit_4/bottleneck_v2/add:0’ shape=(?, ?, ?, 512) dtype=float32>), (‘resnet_v2_50/block3/unit_1/bottleneck_v2/shortcut’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_1/bottleneck_v2/shortcut/BiasAdd:0’ shape=(?, ?, ?, 1024) dtype=float32>), (‘resnet_v2_50/block3/unit_1/bottleneck_v2/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_1/bottleneck_v2/conv1/Relu:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block3/unit_1/bottleneck_v2/conv2’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_1/bottleneck_v2/conv2/Relu:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block3/unit_1/bottleneck_v2/conv3’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_1/bottleneck_v2/conv3/BiasAdd:0’ shape=(?, ?, ?, 1024) dtype=float32>), (‘resnet_v2_50/block3/unit_1/bottleneck_v2’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_1/bottleneck_v2/add:0’ shape=(?, ?, ?, 1024) dtype=float32>), (‘resnet_v2_50/block3/unit_2/bottleneck_v2/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_2/bottleneck_v2/conv1/Relu:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block3/unit_2/bottleneck_v2/conv2’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_2/bottleneck_v2/conv2/Relu:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block3/unit_2/bottleneck_v2/conv3’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_2/bottleneck_v2/conv3/BiasAdd:0’ shape=(?, ?, ?, 1024) dtype=float32>), (‘resnet_v2_50/block3/unit_2/bottleneck_v2’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_2/bottleneck_v2/add:0’ shape=(?, ?, ?, 1024) dtype=float32>), (‘resnet_v2_50/block3/unit_3/bottleneck_v2/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_3/bottleneck_v2/conv1/Relu:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block3/unit_3/bottleneck_v2/conv2’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_3/bottleneck_v2/conv2/Relu:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block3/unit_3/bottleneck_v2/conv3’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_3/bottleneck_v2/conv3/BiasAdd:0’ shape=(?, ?, ?, 1024) dtype=float32>), (‘resnet_v2_50/block3/unit_3/bottleneck_v2’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_3/bottleneck_v2/add:0’ shape=(?, ?, ?, 1024) dtype=float32>), (‘resnet_v2_50/block3/unit_4/bottleneck_v2/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_4/bottleneck_v2/conv1/Relu:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block3/unit_4/bottleneck_v2/conv2’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_4/bottleneck_v2/conv2/Relu:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block3/unit_4/bottleneck_v2/conv3’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_4/bottleneck_v2/conv3/BiasAdd:0’ shape=(?, ?, ?, 1024) dtype=float32>), (‘resnet_v2_50/block3/unit_4/bottleneck_v2’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_4/bottleneck_v2/add:0’ shape=(?, ?, ?, 1024) dtype=float32>), (‘resnet_v2_50/block3/unit_5/bottleneck_v2/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_5/bottleneck_v2/conv1/Relu:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block3/unit_5/bottleneck_v2/conv2’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_5/bottleneck_v2/conv2/Relu:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block3/unit_5/bottleneck_v2/conv3’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_5/bottleneck_v2/conv3/BiasAdd:0’ shape=(?, ?, ?, 1024) dtype=float32>), (‘resnet_v2_50/block3/unit_5/bottleneck_v2’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_5/bottleneck_v2/add:0’ shape=(?, ?, ?, 1024) dtype=float32>), (‘resnet_v2_50/block3/unit_6/bottleneck_v2/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_6/bottleneck_v2/conv1/Relu:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block3/unit_6/bottleneck_v2/conv2’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_6/bottleneck_v2/conv2/Relu:0’ shape=(?, ?, ?, 256) dtype=float32>), (‘resnet_v2_50/block3/unit_6/bottleneck_v2/conv3’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_6/bottleneck_v2/conv3/BiasAdd:0’ shape=(?, ?, ?, 1024) dtype=float32>), (‘resnet_v2_50/block3/unit_6/bottleneck_v2’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_6/bottleneck_v2/add:0’ shape=(?, ?, ?, 1024) dtype=float32>), (‘resnet_v2_50/block3’, <tf.Tensor ‘model_0/resnet_v2_50/block3/unit_6/bottleneck_v2/add:0’ shape=(?, ?, ?, 1024) dtype=float32>), (‘resnet_v2_50/block4/unit_1/bottleneck_v2/shortcut’, <tf.Tensor ‘model_0/resnet_v2_50/block4/unit_1/bottleneck_v2/shortcut/BiasAdd:0’ shape=(?, ?, ?, 2048) dtype=float32>), (‘resnet_v2_50/block4/unit_1/bottleneck_v2/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/block4/unit_1/bottleneck_v2/conv1/Relu:0’ shape=(?, ?, ?, 512) dtype=float32>), (‘resnet_v2_50/block4/unit_1/bottleneck_v2/conv2’, <tf.Tensor ‘model_0/resnet_v2_50/block4/unit_1/bottleneck_v2/conv2/Relu:0’ shape=(?, ?, ?, 512) dtype=float32>), (‘resnet_v2_50/block4/unit_1/bottleneck_v2/conv3’, <tf.Tensor ‘model_0/resnet_v2_50/block4/unit_1/bottleneck_v2/conv3/BiasAdd:0’ shape=(?, ?, ?, 2048) dtype=float32>), (‘resnet_v2_50/block4/unit_1/bottleneck_v2’, <tf.Tensor ‘model_0/resnet_v2_50/block4/unit_1/bottleneck_v2/add:0’ shape=(?, ?, ?, 2048) dtype=float32>), (‘resnet_v2_50/block4/unit_2/bottleneck_v2/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/block4/unit_2/bottleneck_v2/conv1/Relu:0’ shape=(?, ?, ?, 512) dtype=float32>), (‘resnet_v2_50/block4/unit_2/bottleneck_v2/conv2’, <tf.Tensor ‘model_0/resnet_v2_50/block4/unit_2/bottleneck_v2/conv2/Relu:0’ shape=(?, ?, ?, 512) dtype=float32>), (‘resnet_v2_50/block4/unit_2/bottleneck_v2/conv3’, <tf.Tensor ‘model_0/resnet_v2_50/block4/unit_2/bottleneck_v2/conv3/BiasAdd:0’ shape=(?, ?, ?, 2048) dtype=float32>), (‘resnet_v2_50/block4/unit_2/bottleneck_v2’, <tf.Tensor ‘model_0/resnet_v2_50/block4/unit_2/bottleneck_v2/add:0’ shape=(?, ?, ?, 2048) dtype=float32>), (‘resnet_v2_50/block4/unit_3/bottleneck_v2/conv1’, <tf.Tensor ‘model_0/resnet_v2_50/block4/unit_3/bottleneck_v2/conv1/Relu:0’ shape=(?, ?, ?, 512) dtype=float32>), (‘resnet_v2_50/block4/unit_3/bottleneck_v2/conv2’, <tf.Tensor ‘model_0/resnet_v2_50/block4/unit_3/bottleneck_v2/conv2/Relu:0’ shape=(?, ?, ?, 512) dtype=float32>), (‘resnet_v2_50/block4/unit_3/bottleneck_v2/conv3’, <tf.Tensor ‘model_0/resnet_v2_50/block4/unit_3/bottleneck_v2/conv3/BiasAdd:0’ shape=(?, ?, ?, 2048) dtype=float32>), (‘resnet_v2_50/block4/unit_3/bottleneck_v2’, <tf.Tensor ‘model_0/resnet_v2_50/block4/unit_3/bottleneck_v2/add:0’ shape=(?, ?, ?, 2048) dtype=float32>), (‘resnet_v2_50/block4’, <tf.Tensor ‘model_0/resnet_v2_50/block4/unit_3/bottleneck_v2/add:0’ shape=(?, ?, ?, 2048) dtype=float32>), (‘global_pool’, <tf.Tensor ‘model_0/resnet_v2_50/pool5:0’ shape=(?, 1, 1, 2048) dtype=float32>)]) of type ‘OrderedDict’ instead.

The screen shows these when I run the modified file

"train.py" line 22
tf.app.flags.DEFINE_string('pretrained_model_path', 'data/vgg_16.ckpt', '')
to
tf.app.flags.DEFINE_string('pretrained_model_path', 'data/resnet_v2_50.ckpt', '')
"model_train.py" line 5
from nets import vgg
to
from nets import resnet_v2, resnet_utils
line 68,69
with slim.arg_scope(vgg.vgg_arg_scope()):
conv5_3 = vgg.vgg_16(image)
to
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
conv5_3 = resnet_v2.resnet_v2_50(image)

that’s all i modified i would appreciate it if you could help me. @eragonruan

Issue Analytics

  • State:open
  • Created 4 years ago
  • Comments:24

github_iconTop GitHub Comments

1reaction
luckydog5commented, Apr 24, 2019

try this: with slim.arg_scope(resnet_v1.resnet_arg_scope()): net , end_points = resnet_v1.resnet_v1_50(image, num_classes=None, is_training=False) conv5_3 = end_points[‘resnet_v1_50/block3/unit_4/bottleneck_v1/conv2’]

The network runs well but without convergence.

0reactions
JXMsscommented, Sep 4, 2019

@bagpeng 时间有点长了 我也不确定对不对 就是我这篇issue里 进行的前两个操作+ 第三个操作改成 with slim.arg_scope(resnet_v1.resnet_arg_scope()): net , end_points = resnet_v1.resnet_v1_50(image, num_classes=None, is_training=False) conv5_3 = end_points[‘resnet_v1_50/block3/unit_4/bottleneck_v1/conv2’] 当然 end_point里的参数需要你自己去找 上面这楼写了

不建议resnet 因为vgg综合效果更好

Read more comments on GitHub >

github_iconTop Results From Across the Web

Overview — VGG16 and ResNet. A Convolutional ... - Medium
You can start by building your own architecture in order to classify some images or preform some sort of regression. Or, instead of...
Read more >
VGGNet vs ResNet (The Vanishing Gradient Problem)
VGG vs ResNet is the story of the vanishing gradient problem. A popular interview question in the field of AI and Machine Learning!...
Read more >
ImageNet: VGGNet, ResNet, Inception, and Xception with Keras
We no longer use pre-training (in most cases) and instead prefer Xaiver/Glorot ... Even though ResNet is much deeper than VGG16 and VGG19, ......
Read more >
Tutorial 28- Create CNN Model Using Transfer Learning using ...
Tutorial 28- Create CNN Model Using Transfer Learning using Vgg 16, Resnet. Watch later. Share. Copy link. Info. Shopping. Tap to unmute.
Read more >
Why is resnet faster than vgg - Cross Validated
In my original answer, I stated that VGG-16 has roughly 138 million parameters and ResNet has 25.5 million parameters and because of this...
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found