question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

[Feature Request] Optimization over high-dim discrete / combinatorial search spaces

See original GitHub issue

Thank you for the great library!

I’m new to Ax and trying it with simple benchmark functions. I found that the EHVI might be less effective than simple Sobol sampling when I test it with the multi-objective knapsack problem. As can be seen in the following plots, EHVI found fewer solutions. In addition, it tended to violate the constraints (objective1 < 479 and objective2 < 545) and tried to maximize the objectives.

image

I’m not sure, but this is partly because EHVI-based method sample the same points multiple times, and partly because it samples infeasible region. It samples -1 while the range of the parameters is 0 or 1 as follows:

Parameter definition:

parameters = [RangeParameter(f"x{i}", ParameterType.INT, lower=0, upper=1) for i in range(20)]

Log message:

[WARNING 01-21 12:06:27] ax.modelbridge.transforms.int_to_float: Unable to round {'x0': 1, 'x1': -1, 'x2': -1, 'x3': 1, 'x4': 2, 'x5': 1, 'x6': 0, 'x7': -1, 'x8': 1, 'x9': 1, 'x10': -1, 'x11': 1, 'x12': 0, 'x13': 1, 'x14': 0, 'x15': 0, 'x16': 0, 'x17': -1, 'x18': 0, 'x19': -1}to meet constraints of SearchSpace(parameters=[RangeParameter(name='x0', parameter_type=INT, range=[0, 1]), RangeParameter(name='x1', parameter_type=INT, range=[0, 1]), RangeParameter(name='x2', parameter_type=INT, range=[0, 1]), RangeParameter(name='x3', parameter_type=INT, range=[0, 1]), RangeParameter(name='x4', parameter_type=INT, range=[0, 1]), RangeParameter(name='x5', parameter_type=INT, range=[0, 1]), RangeParameter(name='x6', parameter_type=INT, range=[0, 1]), RangeParameter(name='x7', parameter_type=INT, range=[0, 1]), RangeParameter(name='x8', parameter_type=INT, range=[0, 1]), RangeParameter(name='x9', parameter_type=INT, range=[0, 1]), RangeParameter(name='x10', parameter_type=INT, range=[0, 1]), RangeParameter(name='x11', parameter_type=INT, range=[0, 1]), RangeParameter(name='x12', parameter_type=INT, range=[0, 1]), RangeParameter(name='x13', parameter_type=INT, range=[0, 1]), RangeParameter(name='x14', parameter_type=INT, range=[0, 1]), RangeParameter(name='x15', parameter_type=INT, range=[0, 1]), RangeParameter(name='x16', parameter_type=INT, range=[0, 1]), RangeParameter(name='x17', parameter_type=INT, range=[0, 1]), RangeParameter(name='x18', parameter_type=INT, range=[0, 1]), RangeParameter(name='x19', parameter_type=INT, range=[0, 1])], parameter_constraints=[ParameterConstraint(47*x0 + 22*x1 + 82*x2 + 19*x3 + 85*x4 + 15*x5 + 89*x6 + 74*x7 + 26*x8 + 11*x9 + 86*x10 + 81*x11 + 16*x12 + 35*x13 + 60*x14 + 30*x15 + 28*x16 + 94*x17 + 21*x18 + 38*x19 <= 479), ParameterConstraint(39*x0 + 24*x1 + 60*x2 + 78*x3 + 97*x4 + 97*x5 + 96*x6 + 23*x7 + 19*x8 + 17*x9 + 73*x10 + 71*x11 + 32*x12 + 67*x13 + 11*x14 + 10*x15 + 70*x16 + 91*x17 + 18*x18 + 98*x19 <= 545)])

I’m wondering whether it was expected behavior or I configured the EHVI wrongly. Here’s a notebook to reproduce the experiment. Could you give me any comments about it?

Issue Analytics

  • State:closed
  • Created 3 years ago
  • Comments:6 (5 by maintainers)

github_iconTop GitHub Comments

2reactions
Balandatcommented, Jan 22, 2021

Feel free to leave it open. I’ll rename it to make it more clear that this is a feature request.

1reaction
lena-kashtelyancommented, Apr 23, 2021

We will now be tracking wishlist items / feature requests in a master issue for improved visibility: #566. Of course please feel free to still open new feature requests issues; we’ll take care of thinking them through and adding them to the master issue.

Read more comments on GitHub >

github_iconTop Results From Across the Web

Optimizing Discrete Spaces via Expensive Evaluations
We provide a concrete instantiation of L2S-DISCO for local search procedure and empirically evaluate it on diverse real-world benchmarks.
Read more >
Optimistic Tree Searches for Combinatorial Black-Box ...
We present a novel tree search algorithm for solving black-box combinatorial optimization problems.
Read more >
Combining Latent Space and Structured Kernels for Bayesian ...
A recent BO approach for combinatorial spaces is through a reduction to BO over continuous spaces by learning a latent representation of structures...
Read more >
Optimizing Discrete Spaces via Expensive Evaluations
optimizing expensive functions over discrete spaces, which integrates combinatorial-search with machine learning. • A concrete instantiation of L2S-DISCO ...
Read more >
[1806.08838] Bayesian Optimization of Combinatorial Structures
The combinatorial explosion of the search space and costly evaluations pose challenges for current techniques in discrete optimization and ...
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found