Runtime Error when running multitask bayesian optimization
See original GitHub issueHi guys, when running a multitask bayesian optimization I get the following error:
RuntimeError: size is inconsistent with indices: for dim 1, size is 1 but found index 1
This issue looks almost the same as 183. The difference is that I think I have the most up to date release versions of each of the requisite libraries.
Python: 3.8.2
Cuda: cuda_11.1.relgpu_drvr455TC455_06.29190527_0
ax-platform: 0.1.18
torch: 1.7.0+cu110
botorch: 0.3.2
gpytorch: 1.2.1
And here is the full error output:
Traceback (most recent call last):
File "C:\Source\MultiModeBayesianOptimization.py", line 230, in <module> m = get_MTGP(
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\ax\modelbridge\factory.py", line 258, in get_MTGP
return TorchModelBridge(
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\ax\modelbridge\torch.py", line 66, in __init__
super().__init__(
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\ax\modelbridge\base.py", line 159, in __init__
self._fit(
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\ax\modelbridge\torch.py", line 98, in _fit
super()._fit(
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\ax\modelbridge\array.py", line 89, in _fit
self._model_fit(
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\ax\modelbridge\torch.py", line 134, in _model_fit
self.model.fit(
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\ax\models\torch\botorch.py", line 285, in fit
self.model = self.model_constructor( # pyre-ignore [28]
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\ax\models\torch\botorch_defaults.py", line 166, in get_and_fit_model
mll = fit_gpytorch_model(mll, bounds=bounds)
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\botorch\fit.py", line 66, in fit_gpytorch_model
fit_gpytorch_model(
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\botorch\fit.py", line 126, in fit_gpytorch_model
mll, _ = optimizer(mll, track_iterations=False, **kwargs)
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\botorch\optim\fit.py", line 239, in fit_gpytorch_scipy
res = minimize(
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\scipy\optimize\_minimize.py", line 617, in minimize
return _minimize_lbfgsb(fun, x0, args, jac, bounds,
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\scipy\optimize\lbfgsb.py", line 306, in _minimize_lbfgsb
sf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps,
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\scipy\optimize\optimize.py", line 261, in _prepare_scalar_function
sf = ScalarFunction(fun, x0, args, grad, hess,
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\scipy\optimize\_differentiable_functions.py", line 76, in __init__
self._update_fun()
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\scipy\optimize\_differentiable_functions.py", line 166, in _update_fun
self._update_fun_impl()
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\scipy\optimize\_differentiable_functions.py", line 73, in update_fun
self.f = fun_wrapped(self.x)
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\scipy\optimize\_differentiable_functions.py", line 70, in fun_wrapped
return fun(x, *args)
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\scipy\optimize\optimize.py", line 74, in __call__
self._compute_if_needed(x, *args)
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\scipy\optimize\optimize.py", line 68, in _compute_if_needed
fg = self.fun(x, *args)
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\botorch\optim\utils.py", line 221, in _scipy_objective_and_grad
raise e # pragma: nocover
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\botorch\optim\utils.py", line 214, in _scipy_objective_and_grad
output = mll.model(*train_inputs)
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\gpytorch\models\exact_gp.py", line 257, in __call__
res = super().__call__(*inputs, **kwargs)
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\gpytorch\module.py", line 28, in __call__
outputs = self.forward(*inputs, **kwargs)
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\botorch\models\multitask.py", line 166, in forward
covar = covar_x.mul(covar_i)
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\gpytorch\lazy\lazy_tensor.py", line 1162, in mul
return self._mul_matrix(lazify(other))
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\gpytorch\lazy\lazy_tensor.py", line 506, in _mul_matrix
return NonLazyTensor(self.evaluate() * other.evaluate())
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\gpytorch\utils\memoize.py", line 59, in g
return _add_to_cache(self, cache_name, method(self, *args, **kwargs), *args, kwargs_pkl=kwargs_pkl)
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\gpytorch\lazy\lazy_tensor.py", line 906, in evaluate
res = self.matmul(eye)
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\gpytorch\lazy\interpolated_lazy_tensor.py", line 402, in matmul
right_interp_res = left_t_interp(self.right_interp_indices, self.right_interp_values, tensor, base_size)
File "c:\users\jbweber\appdata\local\virtualenvs\fbax\lib\site-packages\gpytorch\utils\interpolation.py", line 230, in left_t_interp
summing_matrix = cls(summing_matrix_indices, summing_matrix_values, size)
RuntimeError: size is inconsistent with indices: for dim 1, size is 1 but found index 1
Issue Analytics
- State:
- Created 3 years ago
- Comments:9 (4 by maintainers)
Top Results From Across the Web
Multi-task Bayesian Optimization
This tutorial uses synthetic functions to illustrate Bayesian optimization using a multi-task Gaussian Process in Ax. A typical use case is optimizing an ......
Read more >Source code for botorch.models.multitask
Bayesian Optimization with High-Dimensional Outputs. ... set(all_tasks): raise RuntimeError("All output tasks must be present in input data.") self.
Read more >High-Dimensional Bayesian Optimization with Multi ... - arXiv
The error bar shows the best and worst run in five benchmark runs. The higher the IOPS, the better. The figure is cut...
Read more >Multi-Task Bayesian Optimization - NIPS papers
Bayesian optimization has recently been proposed as a framework for automati- cally tuning the hyperparameters of machine learning models and has been shown....
Read more >High-dimensional Bayesian optimization using low ...
For meaningful exploration, we solve a constrained optimization problem. Working on a manuscript? Avoid the common mistakes ...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Hi @wuzheng-sjtu , is this error also happening for you during the multitask tutorial? Or if not, can you provide a reproducible example?
No worries, that’s great to hear, thanks!