Saving data dict to COCO format
See original GitHub issueThanks for the excellent work! I’ve encountered some issues around saving my own annotations into COCO format.
How To Reproduce the Issue
from detectron2.data.datasets.coco import convert_to_coco_json
from detectron2.data import MetadataCatalog, DatasetCatalog
def data_dict():
return [{
'file_name': 'image.png',
'image_id': 'image',
'height': 100,
'width': 100,
'annotations': [{
'bbox': [70, 30, 100, 70],
## area should be 30*40=1200
'bbox_mode': BoxMode.XYXY_ABS,
'category_id': 0,
'iscrowd': 0,
}]
}]
def to_json():
DatasetCatalog.register('test', data_dict)
MetadataCatalog.get('test').set(thing_classes=["first"])
convert_to_coco_json('test', output_folder='./output', allow_cached=False)
if __name__ == '__main__':
to_json()
After running the script above, in ./output/test_coco_format.json
I get: (formatted)
{
"info": {
"date_created": "2019-11-19 23:23:08.401029",
"description": "Automatically generated COCO json file for Detectron2."
},
"images": [
{
"id": "image",
"width": 100,
"height": 100,
"file_name": "image.png"
}
],
"annotations": [
{
"id": 1,
"image_id": "image",
"bbox": [
70.0,
30.0,
30.0,
40.0
],
"area": -400.0,
"category_id": 0,
"iscrowd": 0
}
],
"categories": [
{
"id": 0,
"name": "first"
}
],
"licenses": null
}
Expected behavior
The area in annotation should be positive (1200)
I think the problem is here, but I’m not sure how to correct it. The .area()
function isn’t considering its BoxMode.
BTW, Is saving my own annotation into COCO format and registering it by register_coco_instances
the best practice when using COCO_Evaluator
?
Environment
------------------------ --------------------------------------------------
sys.platform linux
Python 3.7.3 (default, Mar 27 2019, 22:11:17) [GCC 7.3.0]
Numpy 1.17.4
Detectron2 Compiler GCC 7.4
Detectron2 CUDA Compiler 10.0
DETECTRON2_ENV_MODULE <not set>
PyTorch 1.3.1
PyTorch Debug Build False
torchvision 0.4.2
CUDA available True
GPU 0,1,2,3 GeForce RTX 2080 Ti
CUDA_HOME /usr/local/cuda-10.0
NVCC Cuda compilation tools, release 10.0, V10.0.130
Pillow 6.2.1
cv2 4.1.1
------------------------ --------------------------------------------------
PyTorch built with:
- GCC 7.3
- Intel(R) Math Kernel Library Version 2019.0.4 Product Build 20190411 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v0.20.5 (Git Hash 0125f28c61c1f822fd48570b4c1066f96fcb9b2e)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- NNPACK is enabled
- CUDA Runtime 10.1
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
- CuDNN 7.6.3
- Magma 2.5.1
- Build settings: BLAS=MKL, BUILD_NAMEDTENSOR=OFF, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -fopenmp -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Wno-stringop-overflow, DISABLE_NUMA=1, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=True, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF,
Issue Analytics
- State:
- Created 4 years ago
- Reactions:2
- Comments:6 (4 by maintainers)
Top Results From Across the Web
How to work with object detection datasets in COCO format
The “COCO format” is a specific JSON structure dictating how labels and metadata are saved for an image dataset. Many blog posts exist...
Read more >Create COCO Annotations From Scratch - Immersive Limit
This tutorial will teach you how to create a simple COCO-like dataset from scratch. It gives example code and example JSON annotations.
Read more >Source code for detectron2.data.datasets.coco
Returns: list[dict]: a list of dicts in Detectron2 standard dataset dicts ... allow_cached=True): """ Converts dataset into COCO format and saves it to...
Read more >Transform Object Detection dataset… | Apple Developer Forums
COCO has set a standard in Object Detection task dataset format. Is there a tool for translating this dataset format to CreateML format...
Read more >Build Custom COCO Dataset 512x512 Tiled - Kaggle
Convert Annotations to COCO Format ... Image.fromarray(img_array) im_out.save(out_img_file) data['images'].append(dict( license=0, url=None, ...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Hi, nice catch!
@ppwwyyxx BoxMode should be considered in https://github.com/facebookresearch/detectron2/blob/master/detectron2/structures/boxes.py#L118 not in
convert_to_coco_json
@donnydonny123 if you do not use external tools that require your data to be in COCO format it is indeed quite pointless.
Yes, the
Boxes
class is defined to be inXYXY_ABS
mode only. So a conversion before constructingBoxes
is needed.