Unable to jit.script DETR res50 model: :Dictionary inputs to traced functions must have consistent type. Found Tensor and List[Dict[str, Tensor]]
See original GitHub issueInstructions To Reproduce the 🐛 Bug:
- what changes you made (
git diff
) or what code you wrote
Fine tuned DETR model, resnet50 backbone - 3 classes.
-
what exact command you run: prepared a single image per normal validation process as the ‘sample’ (resize, tensorize, normalize, unsqueeze to make batch 1, push to gpu). then: traced` = torch.jit.trace(model,single_batch_tensorimg)
-
what you observed (including full logs):
runtime error - summary error is "Dictionary inputs to traced functions must have consistent type. Found Found Tensor and List[Dict[str, Tensor]]"
Full error log:
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-83-905883ed8622> in <module>
----> 1 traced = torch.jit.trace(model,single_batch_tensorimg)
~/anaconda3/lib/python3.7/site-packages/torch/jit/__init__.py in trace(func, example_inputs, optimize, check_trace, check_inputs, check_tolerance, strict, _force_outplace, _module_class, _compilation_unit)
953 return trace_module(func, {'forward': example_inputs}, None,
954 check_trace, wrap_check_inputs(check_inputs),
--> 955 check_tolerance, strict, _force_outplace, _module_class)
956
957 if (hasattr(func, '__self__') and isinstance(func.__self__, torch.nn.Module) and
~/anaconda3/lib/python3.7/site-packages/torch/jit/__init__.py in trace_module(mod, inputs, optimize, check_trace, check_inputs, check_tolerance, strict, _force_outplace, _module_class, _compilation_unit)
1107 func = mod if method_name == "forward" else getattr(mod, method_name)
1108 example_inputs = make_tuple(example_inputs)
-> 1109 module._c._create_method_from_trace(method_name, func, example_inputs, var_lookup_fn, strict, _force_outplace)
1110 check_trace_method = module._c._get_method(method_name)
1111
RuntimeError: Tracer cannot infer type of {'pred_logits': tensor([[[-1.3257e+00, -4.5160e+00, -3.3199e+00, 6.2382e+00],
[-1.2233e+00, -4.2994e+00, -3.4213e+00, 6.4357e+00],
[-1.7037e+00, -4.1408e+00, -3.2093e+00, 6.6415e+00],
[-1.9977e+00, -4.2006e+00, -2.9134e+00, 6.6455e+00],
[-9.1402e-01, -4.1852e+00, -3.3812e+00, 6.2901e+00],
[-9.0749e-01, -3.8806e+00, -3.7153e+00, 6.6058e+00],
[-8.6349e-01, -4.2650e+00, -3.2326e+00, 6.3258e+00],
[-2.1840e+00, -2.8677e+00, -2.8063e+00, 6.0706e+00],
[-1.4402e+00, -4.1639e+00, -3.0899e+00, 6.0722e+00],
[-1.0651e+00, -4.3728e+00, -3.3428e+00, 6.2091e+00],
[-8.4225e-01, -4.3105e+00, -3.2828e+00, 6.3823e+00],
[-1.3332e+00, -4.4080e+00, -3.4408e+00, 6.4879e+00],
[-1.9474e+00, -3.7540e+00, -2.2489e+00, 6.4509e+00],
[-7.6170e-01, -4.3160e+00, -3.2560e+00, 6.5407e+00],
[-1.5858e+00, -4.7425e+00, -3.0672e+00, 6.5151e+00],
[-1.2460e+00, -4.2103e+00, -3.4207e+00, 6.0635e+00],
[-1.4751e+00, -4.3444e+00, -3.3478e+00, 6.2889e+00],
[-1.5262e+00, -4.0728e+00, -3.1277e+00, 6.4521e+00],
[-1.3835e+00, -4.4318e+00, -3.2489e+00, 6.8782e+00],
[-8.3059e-01, -4.1737e+00, -3.5075e+00, 6.5841e+00],
[-8.6003e-01, -3.9930e+00, -2.8658e+00, 6.1958e+00],
[-1.1195e+00, -4.1224e+00, -3.1234e+00, 6.4970e+00],
[-9.7752e-01, -4.3823e+00, -3.3829e+00, 6.2668e+00],
[-7.1669e-01, -4.2383e+00, -3.4157e+00, 6.5341e+00],
[-8.8181e-01, -4.0628e+00, -3.1997e+00, 6.2601e+00],
[-8.2779e-01, -3.9883e+00, -3.1007e+00, 6.1781e+00],
[-9.9500e-01, -4.2641e+00, -3.5869e+00, 6.4713e+00],
[-2.0311e+00, -3.2360e+00, -2.9700e+00, 6.1869e+00],
[-1.4078e+00, -4.7912e+00, -3.1322e+00, 6.5051e+00],
[-1.2046e+00, -4.3279e+00, -3.5028e+00, 6.2667e+00],
[-1.1305e+00, -4.1406e+00, -3.4895e+00, 6.6066e+00],
[-8.5910e-01, -4.4805e+00, -3.1130e+00, 6.4499e+00],
[-1.5736e+00, -4.5274e+00, -3.1096e+00, 6.2207e+00],
[-8.7325e-01, -4.3082e+00, -3.4655e+00, 6.5778e+00],
[-9.6917e-01, -4.2796e+00, -3.6319e+00, 6.5982e+00],
[-1.0941e+00, -4.3939e+00, -3.3200e+00, 6.4394e+00],
[-1.0556e+00, -4.3867e+00, -3.3821e+00, 6.5570e+00],
[-1.8775e+00, -3.5439e+00, -3.1150e+00, 6.2070e+00],
[-1.2131e+00, -4.0072e+00, -3.0816e+00, 6.3504e+00],
[-2.3224e+00, -3.3842e+00, -2.3198e+00, 6.0812e+00],
[-1.0608e+00, -4.1834e+00, -3.5235e+00, 6.3782e+00],
[-1.0443e+00, -4.2378e+00, -3.4654e+00, 6.3219e+00],
[-1.0877e+00, -4.1976e+00, -3.4058e+00, 6.5459e+00],
[-6.2044e-01, -3.1038e+00, -3.2906e+00, 5.6900e+00],
[-1.2118e+00, -4.2138e+00, -3.4915e+00, 6.2584e+00],
[-2.3219e+00, -2.5062e+00, -2.4384e+00, 5.7084e+00],
[-1.1533e+00, -4.0388e+00, -3.1493e+00, 6.2860e+00],
[-1.0967e+00, -4.6921e+00, -3.2188e+00, 6.5986e+00],
[-1.0805e+00, -4.2764e+00, -3.4335e+00, 6.3430e+00],
[-1.8296e+00, -3.2435e+00, -3.0589e+00, 6.0212e+00],
[-1.0244e+00, -4.3455e+00, -3.3756e+00, 6.2947e+00],
[-1.2441e+00, -4.2204e+00, -3.3408e+00, 6.4183e+00],
[-1.3930e+00, -4.6263e+00, -3.2685e+00, 6.3670e+00],
[-1.0628e+00, -3.7810e+00, -3.2089e+00, 5.7979e+00],
[-1.6535e+00, -4.3075e+00, -3.3257e+00, 6.6525e+00],
[-2.1558e+00, -2.8542e+00, -2.5645e+00, 5.9237e+00],
[-1.2327e+00, -4.3747e+00, -3.3858e+00, 6.2452e+00],
[-9.7423e-01, -4.3141e+00, -3.4089e+00, 6.4728e+00],
[-1.1418e+00, -4.2310e+00, -3.5703e+00, 6.5939e+00],
[-7.1537e-01, -4.1040e+00, -3.5085e+00, 6.1348e+00],
[-1.4839e+00, -4.0042e+00, -3.1457e+00, 6.0577e+00],
[-1.7408e+00, 4.1293e+00, -4.9509e-01, -1.5525e+00],
[-1.0284e+00, -4.2687e+00, -3.3726e+00, 6.2829e+00],
[-1.3814e+00, -4.1389e+00, -3.3440e+00, 6.1566e+00],
[-1.0025e+00, -4.3539e+00, -3.3363e+00, 6.3218e+00],
[-1.5108e+00, -4.3231e+00, -3.2468e+00, 6.5698e+00],
[-1.2099e+00, -4.1864e+00, -3.3779e+00, 6.1933e+00],
[-1.6244e+00, -3.8396e+00, -3.2318e+00, 6.2905e+00],
[-1.4818e+00, -3.9799e+00, -3.2267e+00, 6.1274e+00],
[-1.0574e+00, -4.0651e+00, -3.4919e+00, 6.4319e+00],
[-1.2549e+00, -4.1688e+00, -3.5131e+00, 6.4428e+00],
[ 4.4515e+00, 3.8680e-03, -1.3146e+00, -1.8654e+00],
[-7.6814e-01, -4.1199e+00, -3.3639e+00, 6.6328e+00],
[-1.0299e+00, -4.2803e+00, -3.3329e+00, 6.6037e+00],
[-8.1970e-01, -4.5901e+00, -3.2575e+00, 6.5023e+00],
[-1.2137e+00, -4.0303e+00, -3.0325e+00, 6.4221e+00],
[-1.3679e+00, -4.1100e+00, -3.4035e+00, 6.2796e+00],
[-7.4305e-01, -4.3340e+00, -3.5650e+00, 6.5321e+00],
[-1.0473e+00, -4.1474e+00, -3.4294e+00, 6.4154e+00],
[-1.0486e+00, -4.2867e+00, -3.4619e+00, 6.4207e+00],
[-1.0286e+00, -4.2844e+00, -3.5789e+00, 6.7687e+00],
[-7.5652e-01, -3.7627e+00, -3.3852e+00, 5.9946e+00],
[-1.0777e+00, -4.1732e+00, -3.3713e+00, 6.4387e+00],
[-6.9987e-01, -4.1442e+00, -3.2779e+00, 6.0329e+00],
[-1.5770e+00, -3.8518e+00, -3.3054e+00, 6.2581e+00],
[-1.2293e+00, -4.8014e+00, -2.8239e+00, 6.5217e+00],
[-7.1122e-01, -4.2456e+00, -3.5109e+00, 6.5091e+00],
[-1.2753e+00, -4.2083e+00, -3.3322e+00, 6.4163e+00],
[-4.7021e-01, -3.9568e+00, -3.3516e+00, 6.2389e+00],
[-9.1776e-01, -4.0323e+00, -3.4145e+00, 6.3345e+00],
[-7.6549e-01, -4.0218e+00, -3.1490e+00, 6.1941e+00],
[-1.2081e+00, -4.1735e+00, -3.3727e+00, 6.5662e+00],
[-9.8999e-01, -4.1010e+00, -3.2139e+00, 6.5327e+00],
[-1.2535e+00, -4.1246e+00, -3.5824e+00, 6.5121e+00],
[-9.4460e-01, -4.2512e+00, -3.2911e+00, 6.4086e+00],
[-7.2473e-01, -4.3610e+00, -3.5410e+00, 6.5070e+00],
[-1.3768e+00, -4.0155e+00, -3.4594e+00, 6.3249e+00],
[-1.3593e+00, -4.2313e+00, -3.4009e+00, 6.5089e+00],
[-2.9125e+00, -6.6248e-01, 4.4765e+00, -7.4652e-01],
[-1.0689e+00, -4.0516e+00, -3.5897e+00, 6.4756e+00]]],
device='cuda:0', grad_fn=<SelectBackward>), 'pred_boxes': tensor([[[0.4914, 0.4477, 0.8947, 0.7548],
[0.5291, 0.4641, 0.8433, 0.5586],
[0.4912, 0.4702, 0.6988, 0.7264],
[0.6840, 0.4511, 0.4998, 0.5831],
[0.4970, 0.4911, 0.8647, 0.5582],
[0.5062, 0.4874, 0.8768, 0.5273],
[0.4951, 0.5404, 0.9817, 0.3977],
[0.4263, 0.5440, 0.6654, 0.3528],
[0.4721, 0.4357, 0.6923, 0.7251],
[0.4961, 0.4482, 0.9674, 0.7162],
[0.4957, 0.5516, 0.9916, 0.4525],
[0.4894, 0.4508, 0.9339, 0.7519],
[0.5813, 0.5459, 0.6686, 0.3448],
[0.4983, 0.5499, 0.9455, 0.4293],
[0.4995, 0.4650, 0.9940, 0.7674],
[0.4933, 0.4329, 0.7041, 0.7378],
[0.4930, 0.4378, 0.8551, 0.7548],
[0.5851, 0.4342, 0.6135, 0.6085],
[0.5161, 0.4882, 0.7445, 0.5979],
[0.5108, 0.5296, 0.8478, 0.4747],
[0.5037, 0.5535, 0.9071, 0.3481],
[0.5079, 0.5374, 0.9085, 0.4283],
[0.4912, 0.4524, 0.9914, 0.7348],
[0.4962, 0.5320, 0.8992, 0.4527],
[0.5127, 0.5383, 0.9057, 0.3978],
[0.5108, 0.5544, 0.8970, 0.3692],
[0.4983, 0.4343, 0.9809, 0.7201],
[0.4438, 0.4996, 0.6731, 0.4750],
[0.5694, 0.4991, 0.6922, 0.6957],
[0.5076, 0.4382, 0.7700, 0.7317],
[0.5000, 0.4607, 0.8836, 0.6110],
[0.4932, 0.5476, 0.9992, 0.5053],
[0.4885, 0.4541, 0.9959, 0.7642],
[0.5050, 0.5129, 0.7764, 0.5286],
[0.5005, 0.4495, 0.9250, 0.6592],
[0.4998, 0.4882, 0.9710, 0.5647],
[0.4943, 0.4527, 0.9832, 0.7090],
[0.4539, 0.4514, 0.6784, 0.6066],
[0.4920, 0.5466, 0.9152, 0.4152],
[0.7626, 0.5217, 0.3840, 0.3530],
[0.5153, 0.4426, 0.8132, 0.6955],
[0.4959, 0.4345, 0.9892, 0.7281],
[0.5035, 0.4461, 0.9234, 0.6455],
[0.5035, 0.5573, 0.9327, 0.3174],
[0.4946, 0.4378, 0.6953, 0.7401],
[0.3533, 0.5500, 0.5404, 0.3252],
[0.5398, 0.5231, 0.7213, 0.4283],
[0.4912, 0.5226, 0.9994, 0.6730],
[0.4968, 0.4570, 0.7264, 0.6410],
[0.4413, 0.5372, 0.6804, 0.3830],
[0.5051, 0.4868, 0.8158, 0.6040],
[0.5172, 0.4280, 0.7019, 0.6798],
[0.4862, 0.4567, 0.9995, 0.7663],
[0.4519, 0.5481, 0.6927, 0.3951],
[0.4887, 0.4515, 0.9357, 0.7436],
[0.4121, 0.5410, 0.6361, 0.3439],
[0.4938, 0.4421, 0.6918, 0.7467],
[0.4957, 0.5243, 0.9956, 0.4674],
[0.5030, 0.4340, 0.9764, 0.6499],
[0.5019, 0.4317, 0.8988, 0.6941],
[0.4609, 0.4235, 0.6984, 0.7339],
[0.2117, 0.5438, 0.3544, 0.3137],
[0.4917, 0.4439, 0.9956, 0.7291],
[0.4842, 0.4339, 0.7036, 0.7416],
[0.5047, 0.4434, 0.9468, 0.6899],
[0.4906, 0.4715, 0.9374, 0.7335],
[0.5004, 0.4371, 0.8745, 0.7278],
[0.4769, 0.4211, 0.6882, 0.7038],
[0.4698, 0.4408, 0.6993, 0.6940],
[0.5102, 0.4556, 0.8173, 0.6199],
[0.5031, 0.4379, 0.9853, 0.7267],
[0.4914, 0.5326, 0.9300, 0.3334],
[0.5315, 0.5557, 0.7553, 0.3874],
[0.4991, 0.5213, 0.9842, 0.4994],
[0.5005, 0.5456, 0.9432, 0.4854],
[0.5168, 0.5417, 0.8261, 0.4033],
[0.4930, 0.4339, 0.7079, 0.7174],
[0.4940, 0.5140, 0.8836, 0.5233],
[0.5099, 0.4978, 0.7676, 0.5618],
[0.4982, 0.4456, 0.9477, 0.7125],
[0.4935, 0.4617, 0.9833, 0.6653],
[0.4935, 0.5589, 0.9184, 0.3493],
[0.5057, 0.4839, 0.8128, 0.5647],
[0.5068, 0.5214, 0.8670, 0.4747],
[0.4698, 0.4308, 0.7013, 0.7014],
[0.5683, 0.5551, 0.6711, 0.4762],
[0.4989, 0.5223, 0.8108, 0.4794],
[0.5037, 0.4180, 0.9437, 0.6967],
[0.4983, 0.5587, 0.9043, 0.3711],
[0.4946, 0.5367, 0.9640, 0.4033],
[0.4971, 0.5511, 0.9602, 0.3713],
[0.5127, 0.4491, 0.8125, 0.6487],
[0.5112, 0.5485, 0.9091, 0.3727],
[0.5275, 0.4376, 0.8270, 0.5822],
[0.4979, 0.5453, 0.9824, 0.4286],
[0.4928, 0.4865, 0.9910, 0.5705],
[0.4966, 0.4507, 0.7086, 0.6685],
[0.5273, 0.4258, 0.7093, 0.6504],
[0.7762, 0.5236, 0.3506, 0.3170],
[0.5303, 0.4724, 0.7451, 0.5736]]], device='cuda:0',
grad_fn=<SelectBackward>), 'aux_outputs': [{'pred_logits': tensor([[[-1.2504, -3.5808, -2.8100, 5.6911],
[-1.7174, -3.4767, -2.2490, 5.6828],
[-2.6437, -2.7794, -2.5360, 5.6440],
[-1.6839, -3.5199, -2.1526, 5.7934],
[-1.5109, -3.4127, -2.5975, 5.5956],
[-1.5813, -3.1623, -2.2432, 5.2131],
[-1.7586, -3.6252, -2.3301, 5.7826],
[-2.6149, -2.6782, -2.6334, 5.6346],
[-1.7482, -3.2138, -2.6830, 5.6412],
[-1.9907, -3.3143, -2.4883, 5.7245],
[-2.0257, -3.4633, -2.2368, 5.9086],
[-2.1168, -3.2112, -2.7409, 5.8544],
[-2.5858, -1.8501, -0.0446, 3.2839],
[-1.9236, -3.5415, -2.3592, 5.9901],
[-2.4247, -3.6177, -2.2216, 5.9407],
[-2.5777, -2.1795, -2.2625, 5.3009],
[-1.3931, -3.3417, -2.6735, 5.5696],
[-1.4456, -3.4021, -2.2070, 5.7579],
[-2.0504, -3.1556, -2.1044, 5.7540],
[-1.1664, -2.6429, -2.5354, 4.8856],
[-2.0992, -3.2797, -2.1168, 5.6873],
[-2.5497, -2.6683, -1.5737, 5.1301],
[-0.8091, -3.5701, -2.5191, 5.1769],
[-1.4676, -3.6757, -2.5934, 5.6852],
[-1.7347, -3.1917, -2.1327, 5.6545],
[-1.8354, -3.2167, -2.1430, 5.5313],
[-1.0303, -3.7101, -2.0850, 5.3256],
[-2.7579, -1.6260, -2.1614, 4.8621],
[-1.8907, -3.5321, -2.2240, 5.7266],
[-1.1177, -3.5266, -2.5566, 5.4634],
[-1.4514, -3.6044, -2.6691, 5.6349],
[-2.3068, -3.4657, -2.2415, 5.7814],
[-2.2074, -3.5584, -2.5430, 5.9490],
[-1.2341, -3.5993, -2.2337, 5.5949],
[-1.1097, -3.6458, -2.2985, 5.4380],
[-1.6259, -3.4376, -2.5200, 5.6947],
[-2.0318, -3.0793, -1.9409, 5.4452],
[-2.8346, -1.4108, -2.2085, 4.8268],
[-2.3220, -3.2941, -2.4598, 5.8615],
[-1.4937, -3.3622, -2.2159, 5.7735],
[-1.3712, -3.4375, -2.2487, 5.6910],
[-1.3862, -3.5070, -2.1787, 5.6287],
[-1.4329, -3.4135, -2.4437, 5.6301],
[-2.2192, -2.2570, -2.4264, 5.1008],
[-1.6275, -3.1183, -2.6253, 5.6007],
[-2.6928, -0.7844, -1.8550, 3.8880],
[-1.5130, -3.2955, -2.2231, 5.7158],
[-2.2927, -3.5005, -2.1343, 5.9383],
[-1.2989, -3.4128, -2.6555, 5.5151],
[-2.3887, -2.8568, -2.6236, 5.6963],
[-1.9759, -3.4624, -2.4298, 5.7296],
[-2.0314, -2.9194, -2.0413, 5.6329],
[-2.4279, -3.4936, -2.3452, 5.8252],
[-2.2354, -2.5249, -2.5076, 5.4787],
[-2.3441, -3.2688, -2.6272, 5.9214],
[-2.9130, -1.3358, -2.1282, 4.7073],
[-1.4614, -3.3791, -2.8841, 5.7596],
[-1.5462, -3.5268, -2.1745, 5.6404],
[-1.6422, -3.4747, -2.3748, 5.6628],
[-0.0673, -2.7692, -1.3930, 3.5237],
[-2.5801, -2.2560, -2.4323, 5.5397],
[-1.8590, 3.4514, -0.7615, -1.0146],
[-0.9717, -3.5272, -2.5300, 5.2912],
[-1.9296, -2.9323, -2.7167, 5.6732],
[-1.2924, -3.5150, -2.2950, 5.7105],
[-2.5546, -3.2509, -2.3787, 5.8437],
[-1.1181, -3.5135, -2.5717, 5.4183],
[-3.0005, -1.0266, -1.6711, 4.0950],
[-2.0288, -2.9483, -2.7073, 5.6883],
[-0.8906, -3.5666, -2.4421, 5.2736],
[-1.1664, -3.5286, -2.3683, 5.5724],
[ 3.7035, -0.9299, -0.8875, -0.8911],
[-0.9587, -2.6410, -2.2875, 4.4634],
[-1.7858, -3.3497, -2.2749, 5.8184],
[-2.0658, -3.6200, -2.2396, 5.9750],
[-2.4014, -2.5836, -1.7479, 5.2817],
[-2.6368, -2.0338, -2.3552, 5.2596],
[-1.8437, -3.5947, -2.6635, 5.8387],
[-1.7162, -3.3048, -2.6070, 5.6582],
[-1.2139, -3.4071, -2.6661, 5.5219],
[-1.7903, -3.6471, -2.3148, 5.9152],
[-1.9094, -3.2170, -2.4986, 5.6285],
[-1.1993, -3.6512, -2.5350, 5.4498],
[-1.8164, -3.6394, -2.3245, 5.7558],
[-2.3619, -2.6117, -2.6648, 5.6662],
[-1.7949, -3.6007, -2.4724, 6.0046],
[-1.5244, -3.8219, -2.2344, 5.7408],
[-1.7583, -2.8067, -2.0539, 5.1993],
[-1.2698, -3.4389, -2.4968, 5.1424],
[-1.8990, -3.5888, -2.1812, 5.6946],
[-1.5099, -3.3564, -1.9802, 5.2863],
[-2.2901, -2.8322, -1.7029, 5.2737],
[-2.5696, -2.3374, -0.9916, 4.3264],
[-1.6742, -3.3663, -2.1964, 5.7185],
[-1.5840, -3.5024, -2.2013, 5.7061],
[-2.2832, -3.5258, -2.0242, 5.7375],
[-1.6337, -3.1316, -2.8015, 5.6610],
[-1.2943, -3.4227, -2.3167, 5.7404],
[-1.9429, -0.2366, 2.3898, -0.2129],
[-1.4359, -3.3523, -2.2822, 5.6752]]], device='cuda:0',
grad_fn=<SelectBackward>), 'pred_boxes': tensor([[[0.4604, 0.5678, 0.6222, 0.5269],
[0.4946, 0.5053, 0.8159, 0.7065],
[0.4148, 0.5657, 0.6347, 0.4115],
[0.5399, 0.5307, 0.7094, 0.6822],
[0.4803, 0.5292, 0.7044, 0.6569],
[0.4841, 0.5336, 0.9993, 0.4318],
[0.4933, 0.5585, 0.7030, 0.5799],
[0.4228, 0.5797, 0.6753, 0.4620],
[0.4618, 0.5563, 0.6805, 0.6270],
[0.4381, 0.5482, 0.6391, 0.6216],
[0.6543, 0.5640, 0.4959, 0.6476],
[0.4758, 0.5878, 0.6723, 0.4811],
[0.7833, 0.5275, 0.3221, 0.3220],
[0.5726, 0.5871, 0.5710, 0.5618],
[0.5479, 0.6703, 0.5612, 0.4588],
[0.3641, 0.5438, 0.5521, 0.3616],
[0.4648, 0.5407, 0.6449, 0.6546],
[0.4839, 0.5263, 0.6703, 0.7073],
[0.5699, 0.6116, 0.6397, 0.6014],
[0.4879, 0.5457, 0.9130, 0.3709],
[0.6972, 0.5338, 0.4488, 0.4283],
[0.7477, 0.5385, 0.3976, 0.3647],
[0.4946, 0.5956, 0.6173, 0.5494],
[0.5167, 0.6472, 0.6076, 0.4792],
[0.5427, 0.5630, 0.9414, 0.6511],
[0.6177, 0.5298, 0.5622, 0.5124],
[0.4934, 0.5732, 0.7960, 0.6242],
[0.2879, 0.5454, 0.4704, 0.3416],
[0.4724, 0.5305, 0.6666, 0.6638],
[0.4663, 0.5690, 0.6127, 0.5937],
[0.4215, 0.5938, 0.5175, 0.4684],
[0.5199, 0.5942, 0.6701, 0.4964],
[0.3840, 0.7057, 0.5078, 0.4034],
[0.4841, 0.5714, 0.7456, 0.6142],
[0.4984, 0.5840, 0.8158, 0.6057],
[0.4833, 0.5335, 0.7073, 0.6441],
[0.5333, 0.5764, 0.6981, 0.5413],
[0.2634, 0.5400, 0.4128, 0.3290],
[0.4813, 0.6561, 0.6621, 0.4301],
[0.4961, 0.5177, 0.7870, 0.7166],
[0.4853, 0.5454, 0.7149, 0.6733],
[0.5126, 0.5674, 0.6872, 0.6494],
[0.5058, 0.5016, 0.9797, 0.7209],
[0.4124, 0.5561, 0.6832, 0.3856],
[0.4871, 0.5972, 0.6945, 0.5891],
[0.2339, 0.5449, 0.3813, 0.3339],
[0.4890, 0.5264, 0.7567, 0.7111],
[0.6430, 0.5668, 0.5358, 0.6128],
[0.4908, 0.5581, 0.7370, 0.4396],
[0.4553, 0.6075, 0.7086, 0.5344],
[0.4417, 0.5511, 0.6493, 0.6173],
[0.6377, 0.5691, 0.4980, 0.6918],
[0.4388, 0.7091, 0.5929, 0.3743],
[0.4562, 0.5991, 0.7348, 0.5579],
[0.4276, 0.6948, 0.6112, 0.3766],
[0.2637, 0.5457, 0.4123, 0.3296],
[0.4726, 0.5710, 0.6709, 0.5863],
[0.4869, 0.5543, 0.9997, 0.6144],
[0.4832, 0.5539, 0.9925, 0.6163],
[0.4916, 0.5313, 0.9126, 0.3601],
[0.4115, 0.5755, 0.6611, 0.5027],
[0.2074, 0.5450, 0.3423, 0.3132],
[0.4840, 0.5688, 0.6484, 0.5858],
[0.4667, 0.5776, 0.6848, 0.6116],
[0.4871, 0.5390, 0.6446, 0.6618],
[0.4308, 0.6707, 0.6360, 0.3572],
[0.4647, 0.5434, 0.6170, 0.6425],
[0.2198, 0.5445, 0.3444, 0.3269],
[0.4624, 0.5826, 0.6977, 0.5931],
[0.4830, 0.5760, 0.6470, 0.5879],
[0.4814, 0.5632, 0.6707, 0.6164],
[0.4933, 0.5341, 0.9235, 0.3340],
[0.4939, 0.5445, 0.9276, 0.3617],
[0.5657, 0.5838, 0.7674, 0.6033],
[0.6468, 0.6087, 0.5028, 0.5641],
[0.7275, 0.5405, 0.4231, 0.4298],
[0.3388, 0.5471, 0.5081, 0.3577],
[0.3829, 0.6364, 0.5168, 0.4415],
[0.4673, 0.5361, 0.6874, 0.6511],
[0.4704, 0.5534, 0.6298, 0.6429],
[0.5352, 0.5983, 0.6172, 0.5616],
[0.4824, 0.5696, 0.8035, 0.5356],
[0.5149, 0.6210, 0.6139, 0.5142],
[0.5085, 0.5416, 0.6502, 0.6358],
[0.4442, 0.6033, 0.6836, 0.5341],
[0.5524, 0.6150, 0.5663, 0.5509],
[0.5144, 0.6252, 0.6611, 0.5232],
[0.6996, 0.5334, 0.4685, 0.4364],
[0.4957, 0.5508, 0.8883, 0.4110],
[0.5328, 0.5181, 0.9347, 0.5674],
[0.5677, 0.5327, 0.7561, 0.5289],
[0.6944, 0.5367, 0.4802, 0.4249],
[0.7633, 0.5369, 0.3843, 0.3164],
[0.5093, 0.5134, 0.9764, 0.7148],
[0.5165, 0.5672, 0.9942, 0.5952],
[0.5907, 0.5147, 0.6184, 0.5648],
[0.4722, 0.5639, 0.6748, 0.6355],
[0.5123, 0.5160, 0.6655, 0.7074],
[0.7786, 0.5245, 0.3477, 0.3157],
[0.5107, 0.5055, 0.9462, 0.7265]]], device='cuda:0',
grad_fn=<SelectBackward>)}, {'pred_logits': tensor([[[-1.6500, -2.7915, -3.1436, 5.4312],
[-1.1625, -3.4246, -2.2464, 5.4831],
[-3.0083, -2.1793, -2.1680, 5.0686],
[-1.7548, -3.3570, -2.0972, 5.8348],
[-0.8475, -3.5415, -2.3718, 5.4747],
[-0.8487, -2.9381, -2.5146, 4.8731],
[-0.8502, -3.3339, -2.3982, 5.2410],
[-3.3714, -2.3902, -2.0733, 5.3285],
[-1.8389, -3.3280, -2.5668, 5.7871],
[-1.2719, -3.4554, -2.5377, 5.4720],
[-1.7363, -3.1968, -2.0783, 5.4526],
[-2.5652, -2.4822, -2.6682, 5.3470],
[-3.3959, -2.2413, -0.3635, 4.1775],
[-1.5810, -3.6376, -2.3309, 5.5078],
[-2.6936, -3.3247, -2.0543, 6.0493],
[-2.4304, -2.6600, -2.5299, 5.5151],
[-1.5922, -3.1945, -2.6763, 5.5996],
[-1.6343, -3.1181, -2.0488, 5.6691],
[-3.0456, -2.7233, -1.1656, 5.1956],
[-1.2091, -3.0932, -2.6456, 5.2706],
[-1.7967, -3.5811, -1.4576, 4.7321],
[-3.2810, -2.6536, -1.4455, 5.2102],
[-0.6922, -3.6481, -2.4980, 5.1173],
[-1.0279, -3.1719, -2.2171, 5.1160],
[-1.1500, -2.8763, -2.3207, 5.3278],
[-1.5585, -3.1494, -2.1503, 5.2553],
[-0.5562, -3.6813, -2.5903, 5.1625],
[-3.0774, -2.0517, -2.3170, 5.1939],
[-1.4737, -3.6631, -2.3451, 5.8114],
[-1.0028, -2.9610, -2.9918, 5.2103],
[-1.2367, -2.7583, -2.3197, 4.6859],
[-2.1664, -3.1773, -2.2628, 5.8080],
[-2.5753, -3.1692, -2.4102, 6.1224],
[-0.8347, -3.5695, -2.5362, 5.3728],
[-1.2025, -3.4671, -2.5868, 5.2017],
[-1.1864, -3.5760, -2.5045, 5.7025],
[-2.5731, -3.0669, -1.9202, 5.4031],
[-3.2221, -1.8033, -2.4251, 5.2437],
[-2.5627, -3.0804, -2.3463, 5.8798],
[-2.0421, -3.2197, -2.0862, 5.8463],
[-0.9628, -3.4827, -2.4417, 5.5131],
[-0.6889, -3.7807, -2.1987, 5.3701],
[-0.8387, -3.3127, -2.1262, 5.2251],
[-2.1453, -2.3900, -2.5374, 5.0199],
[-1.3858, -2.7812, -2.9140, 5.2243],
[-3.1792, -1.2023, -2.1183, 4.4930],
[-1.4958, -3.0142, -2.2522, 5.5348],
[-2.3517, -3.1673, -2.0741, 5.8402],
[-1.4280, -3.0156, -2.9565, 5.2168],
[-2.3719, -2.9097, -2.3282, 5.5514],
[-1.3908, -3.6179, -2.6021, 5.6949],
[-2.0438, -3.1872, -1.8978, 5.6104],
[-2.3888, -3.0966, -2.3693, 5.9452],
[-1.6300, -2.9063, -2.5600, 5.4086],
[-3.0860, -2.7783, -2.3277, 5.7895],
[-3.4280, -1.3252, -2.3770, 4.8525],
[-2.1773, -2.7614, -3.0224, 5.7173],
[-0.6196, -3.1901, -2.1711, 4.9953],
[-0.6019, -3.2987, -2.2895, 5.0478],
[-0.8112, -3.1888, -1.9121, 4.5232],
[-2.3307, -2.4977, -2.3405, 5.4466],
[-1.7402, 3.7450, -0.8112, -1.5496],
[-0.2642, -3.5207, -2.4279, 4.9732],
[-1.9299, -2.9438, -2.6822, 5.6510],
[-0.5841, -3.8389, -2.3040, 5.6133],
[-2.7626, -2.9781, -2.1239, 5.7334],
[-0.8485, -3.0610, -2.5015, 5.0099],
[-3.2560, -1.6718, -2.2750, 5.0969],
[-2.1008, -3.1064, -2.6322, 5.8120],
[-0.3918, -3.1805, -2.3507, 4.8291],
[-0.5685, -3.6090, -2.3130, 5.4461],
[ 3.8248, -0.4455, -0.5164, -1.6635],
[-1.2142, -2.8344, -2.7436, 4.8697],
[-1.7848, -2.9460, -2.1537, 5.5382],
[-1.9505, -3.1606, -1.9869, 5.6989],
[-2.3788, -2.8860, -1.7778, 5.1813],
[-3.1216, -2.0013, -2.5002, 5.2550],
[-2.1499, -2.9026, -2.3163, 5.3898],
[-1.5119, -3.3686, -2.6113, 5.8128],
[-1.3604, -3.1144, -2.7825, 5.4365],
[-1.4920, -3.4651, -2.4586, 5.3295],
[-1.0875, -3.1580, -2.4765, 5.1716],
[-0.6646, -3.0004, -2.1291, 4.7016],
[-0.8419, -3.5948, -2.2256, 5.4344],
[-2.8410, -2.3441, -2.3497, 5.3130],
[-1.6268, -3.4865, -2.2048, 5.8213],
[-1.2152, -3.3844, -2.2169, 5.2241],
[-1.6030, -3.3270, -2.0410, 5.3373],
[-1.1779, -3.2011, -2.3970, 4.9374],
[-0.7314, -3.0841, -2.3147, 4.8985],
[-1.1215, -3.1661, -2.5295, 5.1939],
[-2.6078, -2.8395, -1.6961, 5.3535],
[-2.3633, -2.8395, -1.4931, 4.7564],
[-1.5178, -3.2933, -2.1866, 5.5775],
[-0.9147, -3.0284, -2.2748, 5.1922],
[-1.2472, -3.0956, -2.2667, 5.1220],
[-1.6271, -3.0285, -2.7366, 5.6759],
[-1.0379, -3.2832, -2.2338, 5.5998],
[-2.4184, -0.3453, 3.0088, -0.4882],
[-1.5080, -3.2473, -2.1650, 5.5897]]], device='cuda:0',
grad_fn=<SelectBackward>), 'pred_boxes': tensor([[[0.4435, 0.5335, 0.6490, 0.4586],
[0.4984, 0.4164, 0.9986, 0.6202],
[0.2734, 0.5520, 0.4552, 0.3693],
[0.5702, 0.4160, 0.6332, 0.6383],
[0.4848, 0.4619, 1.0000, 0.6557],
[0.4862, 0.5400, 1.0000, 0.4781],
[0.4873, 0.5179, 1.0000, 0.5560],
[0.2647, 0.5478, 0.3135, 0.3521],
[0.4616, 0.4520, 0.7353, 0.6962],
[0.4819, 0.4759, 1.0000, 0.7055],
[0.5628, 0.5435, 0.6601, 0.5494],
[0.4766, 0.5598, 0.7217, 0.4352],
[0.7762, 0.5291, 0.3528, 0.3253],
[0.5485, 0.5489, 0.7354, 0.4340],
[0.5547, 0.6926, 0.7873, 0.4258],
[0.2686, 0.4724, 0.4653, 0.5615],
[0.4152, 0.4529, 0.6370, 0.6787],
[0.6711, 0.4442, 0.4861, 0.5198],
[0.7686, 0.5272, 0.3504, 0.3726],
[0.5144, 0.5140, 0.9033, 0.4753],
[0.6027, 0.5356, 0.6319, 0.3717],
[0.7210, 0.5339, 0.4533, 0.3686],
[0.5001, 0.5478, 0.9019, 0.5160],
[0.4886, 0.5671, 0.9998, 0.5277],
[0.6592, 0.5310, 0.5478, 0.4122],
[0.6451, 0.5501, 0.5938, 0.4185],
[0.5018, 0.5069, 0.9308, 0.5592],
[0.3140, 0.5467, 0.4554, 0.3919],
[0.5372, 0.4419, 0.9762, 0.6901],
[0.4765, 0.5458, 0.7323, 0.4238],
[0.4867, 0.5480, 1.0000, 0.4288],
[0.4818, 0.5823, 1.0000, 0.5026],
[0.4830, 0.6588, 1.0000, 0.4594],
[0.4950, 0.5369, 0.8929, 0.4443],
[0.5107, 0.5524, 0.9006, 0.4467],
[0.4858, 0.4542, 1.0000, 0.6567],
[0.6927, 0.5335, 0.5051, 0.4104],
[0.2438, 0.5160, 0.4057, 0.4169],
[0.4839, 0.5479, 0.9998, 0.5697],
[0.6528, 0.4206, 0.5024, 0.5292],
[0.5230, 0.4769, 0.7375, 0.5580],
[0.5291, 0.4864, 0.8320, 0.6253],
[0.4888, 0.4632, 0.9985, 0.6740],
[0.4215, 0.5541, 0.7006, 0.3759],
[0.3839, 0.5476, 0.5896, 0.4090],
[0.2374, 0.5468, 0.3234, 0.3320],
[0.6845, 0.5106, 0.4927, 0.4501],
[0.5214, 0.6020, 0.9908, 0.5296],
[0.4952, 0.5463, 0.9952, 0.4448],
[0.4672, 0.5480, 0.7635, 0.4349],
[0.4852, 0.4622, 0.9998, 0.7699],
[0.6903, 0.4612, 0.4534, 0.5263],
[0.4802, 0.6362, 1.0000, 0.4682],
[0.4807, 0.5294, 0.8114, 0.4868],
[0.4509, 0.5955, 0.6845, 0.4806],
[0.2471, 0.5363, 0.4268, 0.3557],
[0.4079, 0.5413, 0.5972, 0.4363],
[0.4864, 0.5016, 1.0000, 0.5880],
[0.4825, 0.4723, 1.0000, 0.6350],
[0.4924, 0.5040, 0.9254, 0.5326],
[0.2207, 0.5188, 0.3718, 0.4699],
[0.2077, 0.5443, 0.3449, 0.3116],
[0.4970, 0.5391, 0.9060, 0.4792],
[0.3067, 0.4724, 0.5038, 0.6417],
[0.5347, 0.4896, 0.7209, 0.6656],
[0.4830, 0.5919, 0.9157, 0.4869],
[0.4791, 0.5270, 0.7869, 0.4634],
[0.2575, 0.5347, 0.4426, 0.4375],
[0.4318, 0.4813, 0.7001, 0.5998],
[0.4946, 0.5474, 0.9105, 0.4393],
[0.5115, 0.4991, 0.7890, 0.5764],
[0.4906, 0.5336, 0.9247, 0.3336],
[0.5025, 0.5481, 0.8955, 0.3384],
[0.6276, 0.5447, 0.5885, 0.4528],
[0.5294, 0.6384, 0.7434, 0.5068],
[0.6889, 0.5208, 0.4952, 0.4122],
[0.2139, 0.5306, 0.3845, 0.3974],
[0.4910, 0.5644, 0.9567, 0.5233],
[0.4853, 0.4131, 1.0000, 0.6359],
[0.4872, 0.5130, 0.7930, 0.4482],
[0.5180, 0.5424, 0.8669, 0.4290],
[0.4839, 0.5257, 1.0000, 0.5093],
[0.4903, 0.5378, 0.9972, 0.4460],
[0.5006, 0.4859, 0.9946, 0.6789],
[0.2332, 0.5429, 0.3347, 0.3830],
[0.5441, 0.5842, 0.7345, 0.5780],
[0.5114, 0.5470, 0.8986, 0.3870],
[0.6417, 0.4721, 0.5899, 0.5758],
[0.5046, 0.5485, 0.9289, 0.4603],
[0.4857, 0.5313, 1.0000, 0.5369],
[0.5804, 0.5324, 0.7023, 0.5170],
[0.7062, 0.4988, 0.4578, 0.4503],
[0.6902, 0.5344, 0.5039, 0.3537],
[0.5202, 0.4077, 0.9553, 0.5891],
[0.5423, 0.5399, 0.7645, 0.5042],
[0.5001, 0.5282, 0.9981, 0.5460],
[0.3405, 0.5143, 0.5157, 0.4203],
[0.5902, 0.4427, 0.6202, 0.6028],
[0.7771, 0.5233, 0.3448, 0.3143],
[0.5552, 0.4100, 0.6718, 0.5885]]], device='cuda:0',
grad_fn=<SelectBackward>)}, {'pred_logits': tensor([[[-1.4231, -2.9854, -2.8175, 5.8054],
[-1.0688, -3.1451, -1.9913, 5.2892],
[-2.2668, -2.2551, -2.0935, 5.3384],
[-2.2930, -3.0509, -2.3439, 6.1837],
[-0.3857, -3.1018, -2.4049, 5.2037],
[-0.4172, -2.8127, -2.5592, 5.2967],
[-0.1772, -2.8594, -2.4700, 5.2208],
[-2.6316, -2.3948, -2.1473, 5.8397],
[-1.0754, -3.4004, -2.5016, 5.8086],
[-0.9364, -3.2111, -2.5882, 5.6272],
[-1.2814, -3.0725, -2.0933, 5.4641],
[-1.8306, -2.6572, -2.5809, 5.5190],
[-2.5935, -2.4510, -0.5497, 4.8935],
[-1.3579, -3.2580, -2.1144, 5.7502],
[-2.9793, -3.5588, -1.6405, 5.8022],
[-1.2079, -2.9609, -2.4564, 5.5147],
[-1.1592, -3.3643, -2.6971, 5.8965],
[-1.6293, -3.1758, -1.7289, 5.7704],
[-2.5603, -2.8904, -1.5268, 6.0258],
[-1.6527, -3.0394, -2.5868, 5.7763],
[-1.8605, -3.1928, -1.5969, 5.3262],
[-2.0028, -2.4993, -1.1249, 5.2402],
[-0.9432, -3.2229, -2.5962, 5.6276],
[-0.9028, -3.0440, -2.4930, 5.4841],
[-1.2124, -3.0218, -1.9411, 5.7027],
[-1.6408, -3.0563, -1.7618, 5.5005],
[-0.7354, -3.2734, -2.4202, 5.4369],
[-2.2038, -2.5064, -2.1167, 5.7239],
[-1.7384, -3.4724, -2.6246, 5.8576],
[-1.1197, -3.1313, -2.9491, 5.7304],
[-0.8632, -2.9101, -2.5362, 5.1129],
[-1.5062, -3.1172, -2.2261, 5.6268],
[-2.4600, -3.3812, -2.6840, 6.2146],
[-1.2011, -3.2752, -2.4849, 5.8270],
[-1.2211, -3.2926, -2.4304, 5.5794],
[-0.3876, -3.1259, -2.4386, 5.2451],
[-1.8785, -3.0099, -1.7789, 5.7546],
[-2.1598, -2.5278, -2.1110, 5.8583],
[-1.0620, -2.8968, -2.2855, 5.4242],
[-2.0634, -3.1955, -2.0007, 6.0761],
[-0.6662, -3.3848, -2.2469, 5.4752],
[-0.6792, -3.3040, -2.1194, 5.4110],
[-0.5684, -3.1767, -2.1038, 5.2438],
[-1.4119, -2.6081, -2.5424, 5.3156],
[-1.4367, -2.9236, -2.7233, 5.6171],
[-2.5253, -2.1629, -1.9071, 5.6778],
[-1.1680, -3.0122, -1.5060, 5.3812],
[-2.5888, -3.1524, -2.1023, 6.1741],
[-1.3286, -2.8386, -2.7702, 5.3292],
[-1.6407, -2.8293, -2.3317, 5.8231],
[-0.7324, -3.3081, -2.3558, 5.2729],
[-1.4734, -3.2299, -1.5420, 5.5400],
[-2.2989, -3.3367, -2.6485, 6.1313],
[-0.6450, -2.9306, -2.7030, 5.2167],
[-2.0550, -2.6860, -2.4078, 5.7369],
[-2.2476, -2.1310, -1.9005, 5.5592],
[-1.6438, -3.0448, -2.8049, 5.9452],
[-0.4286, -2.9496, -2.1185, 5.2636],
[-0.1255, -2.8942, -2.3951, 5.2833],
[-0.2177, -2.8967, -1.9466, 4.8758],
[-1.4949, -2.8404, -2.4574, 5.7899],
[-1.9299, 3.9416, -0.5631, -1.5091],
[-1.0772, -3.3255, -2.7333, 5.7596],
[-1.1553, -3.1691, -2.6078, 5.7869],
[-0.2924, -3.4447, -2.1180, 5.2366],
[-1.9532, -2.9933, -2.3763, 5.7377],
[-1.0900, -3.1266, -2.6527, 5.6877],
[-2.0086, -2.3956, -2.0749, 5.5983],
[-0.9961, -3.1074, -2.5959, 5.6631],
[-0.6606, -3.0797, -2.4826, 5.3518],
[-0.7554, -3.2609, -2.3134, 5.5423],
[ 4.0333, -0.1656, -0.3935, -1.9464],
[-1.6300, -3.0205, -2.5745, 5.5450],
[-1.4464, -3.0224, -1.8684, 5.7209],
[-2.2923, -3.3039, -2.0065, 5.7042],
[-1.8417, -2.8574, -1.3871, 5.4191],
[-1.8479, -2.5814, -2.3762, 5.5721],
[-1.8005, -2.8841, -2.5357, 5.4072],
[-0.9564, -3.2119, -2.5473, 5.6096],
[-1.0831, -3.2866, -2.7719, 5.8481],
[-1.1163, -3.0596, -2.2407, 5.4824],
[-0.5106, -2.8198, -2.5989, 5.4795],
[-1.0136, -3.1482, -2.5053, 5.4294],
[-0.5503, -3.2515, -2.2499, 5.2227],
[-1.8307, -2.6809, -2.4564, 5.7499],
[-2.1241, -3.6411, -1.9773, 5.6121],
[-1.2523, -3.1468, -2.3464, 5.5933],
[-1.0927, -3.2725, -1.6309, 5.2525],
[-0.8953, -2.9698, -2.5888, 5.4499],
[-0.0419, -2.8144, -2.4175, 5.2348],
[-1.0292, -3.0725, -2.1068, 5.4061],
[-1.8448, -2.8445, -1.2782, 5.4698],
[-1.8900, -3.0359, -1.5603, 5.3642],
[-1.5739, -3.0762, -2.2299, 5.9266],
[-1.0384, -2.9962, -1.9951, 5.5450],
[-0.2123, -2.9351, -2.4236, 5.2250],
[-1.3655, -3.1446, -2.7411, 5.9292],
[-0.9977, -3.2676, -1.8949, 5.6012],
[-2.3189, -0.4809, 3.7322, -0.5375],
[-1.2448, -3.1832, -1.9165, 5.6238]]], device='cuda:0',
grad_fn=<SelectBackward>), 'pred_boxes': tensor([[[0.3452, 0.4236, 0.5137, 0.7136],
[0.5966, 0.4288, 0.6507, 0.6229],
[0.2612, 0.5497, 0.4357, 0.4605],
[0.6839, 0.3533, 0.4651, 0.4353],
[0.4929, 0.4320, 0.9962, 0.6833],
[0.4980, 0.4623, 0.9969, 0.6161],
[0.5167, 0.4669, 0.8921, 0.5866],
[0.2714, 0.5032, 0.4565, 0.4839],
[0.2987, 0.4134, 0.4529, 0.7180],
[0.4916, 0.4285, 0.9138, 0.7579],
[0.5166, 0.4886, 0.9620, 0.6142],
[0.4424, 0.4825, 0.6524, 0.5860],
[0.6539, 0.5351, 0.5402, 0.3493],
[0.5491, 0.5323, 0.7693, 0.4716],
[0.6717, 0.7030, 0.5366, 0.3924],
[0.2654, 0.4112, 0.4170, 0.7247],
[0.3180, 0.4264, 0.4696, 0.7328],
[0.6669, 0.4307, 0.5154, 0.5532],
[0.6458, 0.5412, 0.5122, 0.4214],
[0.5392, 0.4689, 0.8056, 0.5169],
[0.6007, 0.5453, 0.6566, 0.3815],
[0.4893, 0.5343, 0.7789, 0.4097],
[0.5311, 0.4431, 0.7820, 0.6966],
[0.5018, 0.4536, 0.9780, 0.6516],
[0.6033, 0.4404, 0.6700, 0.6404],
[0.6379, 0.5262, 0.6060, 0.4390],
[0.5277, 0.4245, 0.9445, 0.7164],
[0.3239, 0.4782, 0.5292, 0.5347],
[0.5656, 0.3754, 0.5897, 0.4433],
[0.4460, 0.4300, 0.6202, 0.6885],
[0.4916, 0.4875, 0.9995, 0.5495],
[0.5159, 0.4763, 0.9736, 0.6553],
[0.5115, 0.5098, 0.6909, 0.7220],
[0.5284, 0.5017, 0.8627, 0.5313],
[0.5379, 0.4945, 0.8352, 0.5934],
[0.4984, 0.4213, 0.9958, 0.7140],
[0.5095, 0.4925, 0.9329, 0.5776],
[0.2445, 0.4431, 0.4131, 0.6591],
[0.4952, 0.4405, 0.9724, 0.6556],
[0.6943, 0.4029, 0.4380, 0.4537],
[0.5302, 0.4354, 0.9538, 0.6851],
[0.5259, 0.4209, 0.8996, 0.7331],
[0.5095, 0.4579, 0.9880, 0.6413],
[0.4867, 0.5162, 0.7702, 0.4664],
[0.4048, 0.4312, 0.5832, 0.6815],
[0.2863, 0.5430, 0.4358, 0.3623],
[0.6302, 0.4579, 0.5896, 0.5667],
[0.6080, 0.4678, 0.6147, 0.7205],
[0.5002, 0.4845, 0.9566, 0.5778],
[0.3514, 0.4502, 0.5528, 0.6221],
[0.5094, 0.4299, 0.8437, 0.7190],
[0.6541, 0.4285, 0.5521, 0.6735],
[0.5358, 0.5255, 0.7381, 0.6893],
[0.3586, 0.4415, 0.5903, 0.6584],
[0.4502, 0.4177, 0.6587, 0.7150],
[0.2439, 0.5322, 0.4317, 0.4004],
[0.3391, 0.4274, 0.5031, 0.7238],
[0.4957, 0.4544, 0.9982, 0.6779],
[0.4993, 0.4505, 0.9917, 0.6821],
[0.5027, 0.4206, 0.9144, 0.6893],
[0.2686, 0.4217, 0.4246, 0.7322],
[0.2089, 0.5446, 0.3485, 0.3129],
[0.5314, 0.4501, 0.9330, 0.6856],
[0.2908, 0.4217, 0.4504, 0.7331],
[0.5310, 0.4364, 0.7414, 0.6728],
[0.4592, 0.4235, 0.7121, 0.7318],
[0.4755, 0.4225, 0.7031, 0.6971],
[0.2301, 0.5065, 0.3959, 0.5284],
[0.3465, 0.4194, 0.5078, 0.7431],
[0.4989, 0.4861, 0.9501, 0.5636],
[0.5237, 0.4262, 0.9158, 0.7212],
[0.4912, 0.5352, 0.9290, 0.3313],
[0.5392, 0.5367, 0.7641, 0.3953],
[0.5417, 0.4701, 0.7558, 0.6174],
[0.5829, 0.6021, 0.6730, 0.4650],
[0.5954, 0.5055, 0.6446, 0.4591],
[0.2728, 0.4434, 0.4444, 0.6624],
[0.4994, 0.4313, 0.7829, 0.7068],
[0.5099, 0.3872, 0.9722, 0.6102],
[0.4915, 0.4229, 0.8801, 0.6766],
[0.5343, 0.4959, 0.8622, 0.5861],
[0.4965, 0.4514, 0.9941, 0.6664],
[0.5045, 0.5043, 0.9973, 0.5368],
[0.5378, 0.4534, 0.7889, 0.6374],
[0.2370, 0.4365, 0.4008, 0.6881],
[0.6100, 0.5555, 0.6206, 0.5051],
[0.5319, 0.5019, 0.8353, 0.5148],
[0.6205, 0.4127, 0.6338, 0.7021],
[0.5204, 0.5360, 0.9056, 0.4497],
[0.5101, 0.4485, 0.9371, 0.6502],
[0.5966, 0.4728, 0.6990, 0.5794],
[0.5350, 0.4790, 0.7196, 0.5450],
[0.6119, 0.5364, 0.6574, 0.3876],
[0.5811, 0.3825, 0.6973, 0.6082],
[0.5463, 0.4540, 0.7464, 0.6466],
[0.5082, 0.4592, 0.9692, 0.6734],
[0.4029, 0.4363, 0.5727, 0.6946],
[0.6250, 0.4178, 0.6237, 0.6686],
[0.7770, 0.5237, 0.3505, 0.3150],
[0.5973, 0.4250, 0.6790, 0.6539]]], device='cuda:0',
grad_fn=<SelectBackward>)}, {'pred_logits': tensor([[[-1.1162, -3.7035, -3.0795, 6.1133],
[-1.2160, -3.5730, -2.2189, 5.3453],
[-1.9854, -2.3146, -2.5552, 5.7973],
[-2.0566, -3.0735, -2.3586, 5.9485],
[-0.8528, -3.4781, -2.6605, 5.7390],
[-0.3874, -3.1070, -3.0614, 5.8268],
[-0.7707, -3.2150, -2.7647, 5.6134],
[-2.1406, -2.1442, -2.4924, 5.5742],
[-1.3929, -3.7180, -2.6538, 5.8116],
[-1.1005, -3.7090, -2.8030, 5.8197],
[-1.0991, -3.4300, -2.6064, 5.7625],
[-1.4804, -3.1677, -2.9624, 6.0346],
[-2.2091, -2.6808, -1.3839, 5.2839],
[-1.0450, -3.3302, -2.3920, 5.4023],
[-2.7047, -3.9290, -2.1605, 6.4024],
[-1.2894, -3.5306, -2.8537, 5.7472],
[-1.2925, -3.8171, -2.8466, 5.9891],
[-1.5422, -3.1310, -2.0406, 5.3751],
[-1.8916, -3.2877, -2.4486, 6.3133],
[-0.8722, -3.2748, -2.8729, 5.7728],
[-1.5530, -3.1965, -2.0213, 5.2309],
[-1.6819, -3.0973, -2.1486, 5.8468],
[-0.6525, -3.8565, -2.8088, 5.8247],
[-0.9484, -3.2603, -2.8669, 6.0622],
[-1.1130, -3.3053, -2.5153, 5.5193],
[-1.4192, -3.1684, -2.2446, 5.1990],
[-0.6525, -3.7336, -2.7140, 5.7248],
[-1.8674, -2.2906, -2.4300, 5.5211],
[-1.3664, -3.7100, -2.7815, 5.8811],
[-0.8301, -3.7452, -3.1194, 5.9734],
[-0.5863, -3.2202, -2.9713, 5.8879],
[-1.5549, -3.4965, -2.6137, 6.0383],
[-2.1716, -3.9864, -2.8182, 6.6471],
[-0.8454, -3.4220, -2.7243, 5.8475],
[-0.7476, -3.5711, -2.7505, 5.8240],
[-0.8372, -3.5942, -2.6337, 5.5234],
[-1.2164, -3.5857, -2.6168, 6.2293],
[-1.8055, -2.5923, -2.4705, 5.3860],
[-1.4073, -2.9542, -2.6590, 5.7547],
[-2.2043, -2.7893, -1.9274, 5.4537],
[-0.5882, -3.7436, -2.5869, 5.5419],
[-0.7416, -3.7267, -2.4966, 5.5371],
[-0.6933, -3.5245, -2.5769, 5.9205],
[-1.0323, -2.4939, -2.8852, 5.2109],
[-1.1496, -3.5252, -3.0470, 6.0987],
[-2.0737, -1.8361, -2.1939, 5.1878],
[-1.3481, -3.1971, -2.0598, 5.1385],
[-2.1031, -3.7799, -2.4462, 6.1121],
[-0.9884, -3.1527, -2.9635, 5.6913],
[-1.5664, -2.6683, -2.5971, 5.3102],
[-1.0866, -3.6840, -2.5177, 5.5214],
[-1.2936, -3.6461, -2.2073, 5.4684],
[-1.8741, -3.9879, -2.8203, 6.4552],
[-0.7395, -3.1404, -2.8558, 5.0678],
[-1.9889, -3.1105, -2.8205, 6.2112],
[-1.9853, -1.9834, -2.3098, 5.5369],
[-1.2614, -3.5394, -3.1021, 6.1532],
[-0.8467, -3.2594, -2.5738, 5.5828],
[-0.5321, -3.3350, -2.8172, 5.7600],
[-0.6414, -3.3768, -2.4083, 5.2766],
[-1.3374, -3.2302, -2.6630, 5.6000],
[-1.9823, 4.1271, -0.4793, -1.5280],
[-0.8125, -3.7206, -2.9084, 6.0304],
[-1.3315, -3.5814, -2.8126, 5.8134],
[-0.6584, -3.7776, -2.3883, 5.4691],
[-1.7295, -3.2527, -2.7123, 5.9896],
[-0.9021, -3.6485, -2.9098, 6.0115],
[-1.7219, -2.8510, -2.4660, 5.8685],
[-1.2134, -3.4111, -2.7187, 5.5608],
[-0.6291, -3.2688, -2.8018, 5.8175],
[-0.6566, -3.7216, -2.6624, 5.6881],
[ 4.3031, 0.1184, -1.0466, -1.8691],
[-1.0885, -3.2767, -2.7986, 5.8433],
[-1.2281, -3.4030, -2.5778, 6.0583],
[-1.8854, -3.6581, -2.3959, 5.7738],
[-1.7223, -3.0947, -2.1583, 5.6772],
[-1.6307, -3.1154, -2.7600, 5.8258],
[-1.3146, -3.2644, -2.7935, 5.9752],
[-0.8583, -3.4668, -2.7229, 5.6486],
[-0.7019, -3.6436, -2.9980, 5.9987],
[-0.7727, -3.3370, -2.7549, 5.8421],
[-0.7255, -2.9233, -2.8486, 5.3102],
[-0.9144, -3.3213, -2.8859, 6.0472],
[-0.6404, -3.5078, -2.5673, 5.3582],
[-1.5694, -3.0120, -2.7123, 5.6290],
[-1.8813, -3.7789, -2.1495, 5.4608],
[-0.7428, -3.2995, -2.6378, 5.5890],
[-1.5827, -3.5136, -1.9974, 5.3308],
[-0.7550, -3.0012, -2.9295, 5.6938],
[-0.6125, -3.1273, -2.7412, 5.4797],
[-1.0233, -3.2150, -2.5671, 5.3730],
[-1.4848, -3.3401, -2.1883, 5.6891],
[-1.5731, -3.2015, -2.4313, 5.7881],
[-1.2180, -3.4321, -2.5310, 5.6778],
[-1.1180, -3.2675, -2.5200, 5.5461],
[-0.5237, -3.3511, -2.9367, 5.8799],
[-1.2963, -3.2625, -2.9715, 5.6808],
[-1.2281, -3.5656, -2.2486, 5.4848],
[-3.0042, -0.3081, 4.2593, -0.8091],
[-1.1701, -3.4849, -2.3317, 5.4553]]], device='cuda:0',
grad_fn=<SelectBackward>), 'pred_boxes': tensor([[[0.1702, 0.4606, 0.2849, 0.7321],
[0.5229, 0.4664, 0.7909, 0.5886],
[0.1794, 0.5380, 0.3181, 0.4549],
[0.6342, 0.4746, 0.4965, 0.5822],
[0.4871, 0.4810, 0.9909, 0.6433],
[0.4894, 0.4765, 0.9973, 0.6173],
[0.4934, 0.5311, 0.9609, 0.4637],
[0.2162, 0.5345, 0.3881, 0.3895],
[0.2601, 0.4509, 0.4261, 0.7153],
[0.4728, 0.4630, 0.7207, 0.7464],
[0.4880, 0.5489, 0.9970, 0.5006],
[0.1716, 0.5310, 0.2883, 0.5460],
[0.5069, 0.5339, 0.8696, 0.3526],
[0.5004, 0.5490, 0.9000, 0.4269],
[0.6205, 0.7156, 0.5946, 0.4369],
[0.2105, 0.4435, 0.3443, 0.7319],
[0.2432, 0.4403, 0.3907, 0.7508],
[0.5588, 0.4828, 0.7084, 0.5058],
[0.4955, 0.5213, 0.8765, 0.4684],
[0.4902, 0.5435, 0.9792, 0.4820],
[0.5123, 0.5432, 0.8540, 0.3800],
[0.4896, 0.5297, 0.9920, 0.4322],
[0.4779, 0.4921, 0.7076, 0.6520],
[0.4900, 0.5279, 0.9353, 0.5081],
[0.4998, 0.5346, 0.8706, 0.4404],
[0.5207, 0.5507, 0.8463, 0.3923],
[0.4937, 0.4635, 0.8708, 0.7061],
[0.2295, 0.5313, 0.4042, 0.4176],
[0.5295, 0.4830, 0.6036, 0.6269],
[0.3144, 0.4618, 0.4565, 0.7007],
[0.4877, 0.5020, 0.9857, 0.5402],
[0.4901, 0.5578, 0.9758, 0.5342],
[0.2974, 0.5703, 0.4497, 0.6416],
[0.4939, 0.5395, 0.9115, 0.4680],
[0.4899, 0.5215, 0.8905, 0.5683],
[0.4879, 0.4878, 0.9151, 0.6498],
[0.4893, 0.4880, 0.9843, 0.6714],
[0.2185, 0.5207, 0.3928, 0.4724],
[0.4905, 0.5371, 0.9458, 0.4564],
[0.7018, 0.5016, 0.4213, 0.4112],
[0.4879, 0.4914, 0.8177, 0.6248],
[0.4935, 0.4529, 0.8365, 0.7173],
[0.4871, 0.4840, 0.9991, 0.6672],
[0.4775, 0.5481, 0.9031, 0.3607],
[0.2811, 0.4520, 0.4367, 0.7219],
[0.2116, 0.5506, 0.3670, 0.3559],
[0.5244, 0.5215, 0.8424, 0.4114],
[0.5391, 0.5701, 0.7667, 0.5812],
[0.4621, 0.5238, 0.6844, 0.5013],
[0.2304, 0.5351, 0.3946, 0.4050],
[0.4751, 0.4810, 0.8100, 0.6608],
[0.5058, 0.4797, 0.7607, 0.6399],
[0.4294, 0.5329, 0.6049, 0.7048],
[0.3394, 0.5167, 0.5596, 0.4860],
[0.1984, 0.4984, 0.3309, 0.6260],
[0.2048, 0.5215, 0.3719, 0.3858],
[0.2147, 0.4714, 0.3536, 0.7174],
[0.4891, 0.5415, 0.9906, 0.5080],
[0.4897, 0.4724, 0.9985, 0.6923],
[0.4929, 0.4591, 0.9780, 0.6876],
[0.2508, 0.4492, 0.4215, 0.7213],
[0.2106, 0.5442, 0.3519, 0.3156],
[0.4911, 0.4713, 0.7783, 0.6908],
[0.2445, 0.4448, 0.4008, 0.7318],
[0.4928, 0.4719, 0.8208, 0.6396],
[0.3257, 0.5086, 0.5025, 0.6188],
[0.4625, 0.4509, 0.6706, 0.7155],
[0.2037, 0.4770, 0.3550, 0.6187],
[0.2760, 0.4584, 0.4520, 0.6909],
[0.4882, 0.4996, 0.9585, 0.5546],
[0.4878, 0.4604, 0.7394, 0.7019],
[0.4920, 0.5336, 0.9306, 0.3339],
[0.5077, 0.5456, 0.8863, 0.3958],
[0.4878, 0.5201, 0.9987, 0.5524],
[0.5112, 0.5827, 0.8250, 0.4683],
[0.4903, 0.5379, 0.9411, 0.4306],
[0.1927, 0.4942, 0.3308, 0.5906],
[0.4882, 0.5213, 0.8267, 0.5426],
[0.4800, 0.4833, 0.8291, 0.6418],
[0.4834, 0.4752, 0.7484, 0.6918],
[0.4918, 0.5149, 0.9105, 0.5857],
[0.4931, 0.5429, 0.9266, 0.4164],
[0.4894, 0.5239, 0.8400, 0.5194],
[0.4842, 0.4992, 0.8786, 0.5336],
[0.2190, 0.4838, 0.3833, 0.5947],
[0.5852, 0.5808, 0.6921, 0.4246],
[0.4936, 0.5404, 0.8906, 0.4358],
[0.4980, 0.4581, 0.7582, 0.6727],
[0.4950, 0.5393, 0.9369, 0.4023],
[0.4920, 0.5089, 0.9805, 0.5369],
[0.5048, 0.5481, 0.8513, 0.4191],
[0.4832, 0.5249, 0.9516, 0.4689],
[0.4885, 0.5384, 0.9551, 0.4283],
[0.4931, 0.4780, 0.9497, 0.6184],
[0.4896, 0.5500, 0.9681, 0.4385],
[0.4887, 0.4731, 0.9990, 0.6993],
[0.3442, 0.5132, 0.5138, 0.5130],
[0.5190, 0.4620, 0.8191, 0.6131],
[0.7753, 0.5238, 0.3522, 0.3171],
[0.5016, 0.4808, 0.8970, 0.5692]]], device='cuda:0',
grad_fn=<SelectBackward>)}, {'pred_logits': tensor([[[-1.6195e+00, -4.4590e+00, -2.9284e+00, 6.3438e+00],
[-1.3827e+00, -3.8483e+00, -2.8002e+00, 5.8636e+00],
[-2.4032e+00, -3.3997e+00, -2.4636e+00, 6.2632e+00],
[-2.1288e+00, -3.7418e+00, -2.3507e+00, 6.2070e+00],
[-1.2213e+00, -3.9480e+00, -2.8529e+00, 5.9780e+00],
[-1.3764e+00, -3.5331e+00, -3.1036e+00, 6.2684e+00],
[-1.1390e+00, -3.8203e+00, -2.7873e+00, 5.8636e+00],
[-2.5303e+00, -2.5651e+00, -2.4481e+00, 5.8075e+00],
[-1.5532e+00, -4.2327e+00, -2.6495e+00, 5.9321e+00],
[-1.2408e+00, -4.3479e+00, -2.8397e+00, 6.1178e+00],
[-1.4951e+00, -4.0306e+00, -2.7509e+00, 6.1961e+00],
[-1.8421e+00, -4.0824e+00, -2.8595e+00, 6.4210e+00],
[-2.4118e+00, -3.2511e+00, -1.9146e+00, 6.1430e+00],
[-1.3563e+00, -3.8963e+00, -2.6481e+00, 6.1175e+00],
[-2.4518e+00, -4.7317e+00, -2.3036e+00, 6.6069e+00],
[-1.3567e+00, -4.1709e+00, -2.9985e+00, 5.9754e+00],
[-1.5624e+00, -4.3517e+00, -2.9236e+00, 6.2333e+00],
[-1.7804e+00, -3.5279e+00, -2.6411e+00, 6.0306e+00],
[-1.9572e+00, -4.0045e+00, -2.6954e+00, 6.6457e+00],
[-1.2843e+00, -3.6856e+00, -3.0383e+00, 6.1717e+00],
[-1.5199e+00, -3.6128e+00, -2.4441e+00, 5.7818e+00],
[-1.8320e+00, -3.7049e+00, -2.6154e+00, 6.2285e+00],
[-1.1837e+00, -4.4366e+00, -2.8877e+00, 6.2217e+00],
[-1.2268e+00, -3.9429e+00, -2.9941e+00, 6.4816e+00],
[-1.4157e+00, -3.7111e+00, -2.7412e+00, 5.8815e+00],
[-1.5027e+00, -3.5832e+00, -2.5867e+00, 5.7584e+00],
[-1.2625e+00, -4.1434e+00, -2.9202e+00, 6.1943e+00],
[-2.2661e+00, -2.7710e+00, -2.6199e+00, 5.8227e+00],
[-1.5452e+00, -4.4758e+00, -2.5350e+00, 6.2031e+00],
[-1.3601e+00, -4.2704e+00, -3.1336e+00, 6.2617e+00],
[-1.4358e+00, -3.7951e+00, -3.0669e+00, 6.3648e+00],
[-1.5361e+00, -4.2397e+00, -2.5798e+00, 6.3967e+00],
[-2.1231e+00, -4.7545e+00, -2.7531e+00, 6.6037e+00],
[-1.3064e+00, -3.9693e+00, -2.8833e+00, 6.2371e+00],
[-1.4271e+00, -4.0420e+00, -3.0311e+00, 6.3297e+00],
[-1.1235e+00, -4.1531e+00, -2.7350e+00, 5.9347e+00],
[-1.5445e+00, -4.2464e+00, -2.7308e+00, 6.3902e+00],
[-2.1667e+00, -3.1046e+00, -2.6195e+00, 5.7563e+00],
[-1.5931e+00, -3.6883e+00, -2.6906e+00, 6.1028e+00],
[-2.5027e+00, -2.9647e+00, -2.1161e+00, 5.8212e+00],
[-1.2159e+00, -4.0123e+00, -2.9169e+00, 6.0621e+00],
[-1.2250e+00, -4.1474e+00, -2.8074e+00, 6.0214e+00],
[-1.3915e+00, -3.9405e+00, -2.9009e+00, 6.2916e+00],
[-1.1725e+00, -2.8746e+00, -3.0120e+00, 5.4685e+00],
[-1.4669e+00, -4.1936e+00, -2.9564e+00, 6.1645e+00],
[-2.4655e+00, -2.1226e+00, -2.2757e+00, 5.4959e+00],
[-1.5861e+00, -3.6893e+00, -2.5827e+00, 5.8086e+00],
[-1.9286e+00, -4.4928e+00, -2.5641e+00, 6.5601e+00],
[-1.3641e+00, -3.9145e+00, -3.0208e+00, 6.0581e+00],
[-2.0842e+00, -2.9913e+00, -2.6180e+00, 5.5829e+00],
[-1.2247e+00, -4.1773e+00, -2.7245e+00, 5.9249e+00],
[-1.4689e+00, -3.8988e+00, -2.7617e+00, 5.9699e+00],
[-1.8488e+00, -4.7588e+00, -2.7748e+00, 6.5606e+00],
[-1.1917e+00, -3.4813e+00, -2.7955e+00, 5.3110e+00],
[-2.3956e+00, -4.0149e+00, -2.7081e+00, 6.6886e+00],
[-2.3813e+00, -2.5525e+00, -2.3205e+00, 5.7332e+00],
[-1.4815e+00, -4.2510e+00, -2.9703e+00, 6.2246e+00],
[-1.3955e+00, -3.7976e+00, -2.8563e+00, 6.0663e+00],
[-1.4332e+00, -3.8399e+00, -2.9510e+00, 6.2020e+00],
[-1.1752e+00, -3.9332e+00, -2.7589e+00, 5.9056e+00],
[-1.5764e+00, -3.8702e+00, -2.6761e+00, 5.8174e+00],
[-2.0656e+00, 4.1276e+00, -4.3906e-01, -1.4345e+00],
[-1.2471e+00, -4.2527e+00, -2.9475e+00, 6.2896e+00],
[-1.5740e+00, -4.0977e+00, -2.8201e+00, 6.0091e+00],
[-1.1104e+00, -4.1922e+00, -2.7236e+00, 5.9785e+00],
[-2.1378e+00, -4.0418e+00, -2.6308e+00, 6.4888e+00],
[-1.4818e+00, -4.1321e+00, -2.9266e+00, 6.1879e+00],
[-2.0038e+00, -3.5830e+00, -2.5550e+00, 6.0215e+00],
[-1.6301e+00, -3.8899e+00, -2.7091e+00, 5.8515e+00],
[-1.3691e+00, -3.8933e+00, -2.9713e+00, 6.2729e+00],
[-1.3947e+00, -4.0538e+00, -2.9421e+00, 6.2044e+00],
[ 4.3452e+00, -2.8690e-03, -1.2556e+00, -1.9017e+00],
[-1.2634e+00, -3.7075e+00, -2.8204e+00, 6.1854e+00],
[-1.6534e+00, -3.9514e+00, -2.7208e+00, 6.3711e+00],
[-1.4873e+00, -4.2531e+00, -2.6164e+00, 6.1156e+00],
[-1.8539e+00, -3.6203e+00, -2.5836e+00, 6.1172e+00],
[-1.7158e+00, -3.8673e+00, -2.8349e+00, 6.0272e+00],
[-1.2710e+00, -3.9977e+00, -3.0403e+00, 6.3519e+00],
[-1.1534e+00, -3.9524e+00, -2.8002e+00, 5.9601e+00],
[-1.2766e+00, -4.1817e+00, -2.9220e+00, 6.2540e+00],
[-1.4688e+00, -4.0363e+00, -2.9055e+00, 6.4675e+00],
[-1.2079e+00, -3.3657e+00, -2.9877e+00, 5.6439e+00],
[-1.4096e+00, -3.9031e+00, -3.0698e+00, 6.3509e+00],
[-9.8401e-01, -3.7624e+00, -2.7551e+00, 5.5333e+00],
[-1.8545e+00, -3.6251e+00, -2.7463e+00, 5.9438e+00],
[-1.7581e+00, -4.4184e+00, -2.3085e+00, 6.1497e+00],
[-1.1907e+00, -3.9245e+00, -2.8815e+00, 6.1389e+00],
[-1.5773e+00, -3.9300e+00, -2.7206e+00, 5.9558e+00],
[-1.0606e+00, -3.5542e+00, -3.0294e+00, 6.0895e+00],
[-1.4166e+00, -3.6723e+00, -2.8987e+00, 6.0354e+00],
[-1.3823e+00, -3.6085e+00, -2.8037e+00, 5.8583e+00],
[-1.7279e+00, -3.8922e+00, -2.6499e+00, 6.2398e+00],
[-1.7093e+00, -3.7567e+00, -2.7649e+00, 6.2483e+00],
[-1.5017e+00, -3.7128e+00, -2.8925e+00, 5.9712e+00],
[-1.4966e+00, -3.8514e+00, -2.6731e+00, 6.0206e+00],
[-1.1200e+00, -4.1016e+00, -2.9189e+00, 6.2101e+00],
[-1.7542e+00, -3.7218e+00, -2.9580e+00, 6.0476e+00],
[-1.4632e+00, -3.8406e+00, -2.9112e+00, 6.0628e+00],
[-3.1172e+00, -5.0856e-01, 4.4328e+00, -7.6503e-01],
[-1.4182e+00, -3.7123e+00, -2.9029e+00, 5.9989e+00]]],
device='cuda:0', grad_fn=<SelectBackward>), 'pred_boxes': tensor([[[0.4831, 0.5319, 0.6748, 0.5955],
[0.5303, 0.4793, 0.8343, 0.5207],
[0.4420, 0.5738, 0.6661, 0.5213],
[0.6993, 0.4884, 0.4894, 0.5257],
[0.5203, 0.5036, 0.8594, 0.5192],
[0.5145, 0.5104, 0.8863, 0.4615],
[0.5142, 0.5462, 0.9188, 0.3874],
[0.3376, 0.5506, 0.5492, 0.3326],
[0.4104, 0.5135, 0.6020, 0.5497],
[0.5266, 0.5145, 0.7976, 0.5729],
[0.5109, 0.5679, 0.9969, 0.4354],
[0.4717, 0.5606, 0.6730, 0.5274],
[0.5442, 0.5422, 0.7430, 0.3496],
[0.5237, 0.5615, 0.9200, 0.3930],
[0.5604, 0.5628, 0.6212, 0.5938],
[0.4453, 0.5012, 0.6666, 0.5863],
[0.4490, 0.4788, 0.6575, 0.6430],
[0.5806, 0.4787, 0.6582, 0.4769],
[0.5247, 0.5399, 0.7399, 0.4287],
[0.5201, 0.5440, 0.9396, 0.4189],
[0.5217, 0.5497, 0.8925, 0.3481],
[0.5175, 0.5488, 0.9152, 0.3926],
[0.5333, 0.5308, 0.7300, 0.5863],
[0.5173, 0.5495, 0.8851, 0.4150],
[0.5203, 0.5400, 0.9239, 0.3849],
[0.5211, 0.5575, 0.8972, 0.3551],
[0.5277, 0.4936, 0.7905, 0.5897],
[0.3799, 0.5512, 0.5850, 0.3609],
[0.5694, 0.5001, 0.6967, 0.5762],
[0.4984, 0.4928, 0.6746, 0.5845],
[0.5225, 0.5177, 0.8408, 0.4723],
[0.5113, 0.5744, 0.9983, 0.4589],
[0.5331, 0.5235, 0.6810, 0.6517],
[0.5252, 0.5410, 0.8530, 0.4389],
[0.5280, 0.5166, 0.8034, 0.4989],
[0.5259, 0.5123, 0.8828, 0.5264],
[0.5255, 0.5215, 0.7702, 0.5492],
[0.3749, 0.5405, 0.5748, 0.4065],
[0.5079, 0.5651, 0.8727, 0.3719],
[0.7518, 0.5220, 0.4103, 0.3640],
[0.5240, 0.4939, 0.8256, 0.5545],
[0.5263, 0.4829, 0.7970, 0.6086],
[0.5218, 0.4919, 0.9067, 0.5549],
[0.5083, 0.5550, 0.9364, 0.3232],
[0.4482, 0.5063, 0.6469, 0.5696],
[0.2876, 0.5533, 0.4501, 0.3252],
[0.5219, 0.5177, 0.8431, 0.3970],
[0.5153, 0.5823, 0.9911, 0.5523],
[0.5178, 0.5335, 0.7157, 0.4494],
[0.3790, 0.5502, 0.5763, 0.3378],
[0.5212, 0.5263, 0.8309, 0.5019],
[0.5222, 0.4797, 0.7566, 0.5602],
[0.5148, 0.5203, 0.7105, 0.6439],
[0.3888, 0.5488, 0.6089, 0.3771],
[0.4877, 0.5543, 0.6773, 0.5488],
[0.3359, 0.5448, 0.5282, 0.3304],
[0.4417, 0.5335, 0.6581, 0.5375],
[0.5111, 0.5390, 0.9735, 0.4293],
[0.5190, 0.4832, 0.8596, 0.5578],
[0.5106, 0.4779, 0.8847, 0.5794],
[0.3850, 0.5084, 0.5735, 0.5447],
[0.2120, 0.5446, 0.3542, 0.3123],
[0.5302, 0.5176, 0.7469, 0.5867],
[0.4178, 0.5030, 0.6217, 0.5722],
[0.5248, 0.4926, 0.8498, 0.5579],
[0.4975, 0.5560, 0.7114, 0.5328],
[0.5235, 0.4954, 0.7076, 0.5772],
[0.4102, 0.5266, 0.6218, 0.4837],
[0.4073, 0.5210, 0.6183, 0.5172],
[0.5240, 0.5176, 0.7819, 0.4885],
[0.5282, 0.4932, 0.7304, 0.5890],
[0.4913, 0.5331, 0.9302, 0.3316],
[0.5207, 0.5622, 0.7873, 0.3631],
[0.5155, 0.5479, 0.9899, 0.4303],
[0.5215, 0.5806, 0.8828, 0.4227],
[0.5216, 0.5458, 0.8430, 0.3860],
[0.4319, 0.5338, 0.6572, 0.4843],
[0.5203, 0.5456, 0.7951, 0.4592],
[0.5178, 0.5188, 0.8549, 0.4968],
[0.5207, 0.5057, 0.7450, 0.5722],
[0.5211, 0.5263, 0.8715, 0.5075],
[0.5070, 0.5543, 0.9154, 0.3384],
[0.5264, 0.5381, 0.7512, 0.4494],
[0.5134, 0.5181, 0.8871, 0.4635],
[0.3812, 0.5276, 0.5685, 0.4873],
[0.5839, 0.5816, 0.6801, 0.3979],
[0.5215, 0.5488, 0.8670, 0.4045],
[0.5223, 0.4780, 0.7783, 0.5832],
[0.5113, 0.5610, 0.9186, 0.3581],
[0.5165, 0.5303, 0.8985, 0.4189],
[0.5198, 0.5536, 0.9361, 0.3572],
[0.5229, 0.5216, 0.7920, 0.4792],
[0.5166, 0.5513, 0.9085, 0.3657],
[0.5212, 0.4781, 0.8627, 0.5350],
[0.5103, 0.5536, 0.9902, 0.3942],
[0.5056, 0.5165, 0.9755, 0.5147],
[0.4481, 0.5316, 0.6385, 0.4477],
[0.5242, 0.4685, 0.8261, 0.5503],
[0.7750, 0.5241, 0.3524, 0.3153],
[0.5214, 0.4948, 0.8510, 0.4912]]], device='cuda:0',
grad_fn=<SelectBackward>)}]}
:Dictionary inputs to traced functions must have consistent type. Found Tensor and List[Dict[str, Tensor]]
- please simplify the steps as much as possible so they do not require additional resources to run, such as a private dataset.
Expected behavior:
Able to trace and export the traced DETR model for production use 😃 (I confirmed I have the latest DETR source that has the PR from June 4 with the fixes to script the resnet models).
If there are no obvious error in “what you observed” provided above, please tell us the expected behavior.
Environment:
Provide your environment information using the following command:
Collecting environment information...
PyTorch version: 1.6.0
Is debug build: No
CUDA used to build PyTorch: 10.1
OS: Ubuntu 18.04.3 LTS
GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
CMake version: version 3.10.2
Python version: 3.7
Is CUDA available: Yes
CUDA runtime version: 10.1.243
GPU models and configuration: GPU 0: Tesla V100-SXM2-16GB
Nvidia driver version: 435.21
cuDNN version: /usr/local/cuda-10.1/targets/x86_64-linux/lib/libcudnn.so.7.6.3
Versions of relevant libraries:
[pip3] numpy==1.18.5
[pip3] numpydoc==1.1.0
[pip3] torch==1.6.0
[pip3] torchvision==0.7.0
[conda] _pytorch_select 0.2 gpu_0
[conda] blas 1.0 mkl
[conda] cudatoolkit 10.1.243 h6bb024c_0
[conda] mkl 2020.1 217
[conda] mkl-service 2.3.0 py37he904b0f_0
[conda] mkl_fft 1.1.0 py37h23d657b_0
[conda] mkl_random 1.1.1 py37h0573a6f_0
[conda] numpy 1.18.5 py37ha1c710e_0
[conda] numpy-base 1.18.5 py37hde5b4d6_0
[conda] numpydoc 1.1.0 py_0
[conda] pytorch 1.6.0 py3.7_cuda10.1.243_cudnn7.6.3_0 pytorch
[conda] torchvision 0.7.0 py37_cu101 pytorch
Issue Analytics
- State:
- Created 3 years ago
- Reactions:1
- Comments:15 (15 by maintainers)
Top Results From Across the Web
torch.jit.trace — PyTorch 1.13 documentation
Trace a function and return an executable or ScriptFunction that will be optimized ... only on Tensor s and lists, dictionaries, and tuples...
Read more >torch.jit.trace — PyTorch 1.6.0 documentation
Trace a function and return an executable or ScriptFunction that will be optimized ... only on Tensor s and lists, dictionaries, and tuples...
Read more >Python API: test/test_jit.py Source File - Caffe2
232 # Running JIT passes requires that we own the graph (with a shared_ptr). 233 # The debug state struct does not own...
Read more >Torch Script — PyTorch master documentation - API Manual
Using torch.jit.trace , you can take an existing module or python function, provide example inputs, and we run the function, recording the operations ......
Read more >Can't trace the model using torch.jit.trace - Stack Overflow
ERROR: Graphs differed across invocations! Graph diff: graph(%self.1 : __torch__.FCN_NetModel.Net, %Images : Tensor): %2 : __ ...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Hey @lessw2020
The torchscript version only support models without
aux_loss
. This is totally fine for all models for inference, becauseaux_loss
is only used during training.So what I would recommend you to do is to set
aux_loss
to False in your model, set it to inference mode, and try scripting it again.Hi @lessw2020
1 -
NestedTensor.from_tensor_list
was renamed tonested_tensor_from_tensor_list
in https://github.com/facebookresearch/detr/pull/51 . Here is an example showing how to run a model with torchscript usingnested_tensor_from_tensor_list
https://github.com/facebookresearch/detr/blob/5e66b4cd15b2b182da347103dd16578d28b49d69/test_all.py#L69-L76 2 - The example above shows thatimg
is a Tensor which has been resized / normalized, no batch dimension (so 3d tensor)I believe this should be enough to get your example working. As such, I’m closing this issue but let us know if the problem persists