question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

Unable to jit.script DETR res50 model: :Dictionary inputs to traced functions must have consistent type. Found Tensor and List[Dict[str, Tensor]]

See original GitHub issue

Instructions To Reproduce the 🐛 Bug:

  1. what changes you made (git diff) or what code you wrote
Fine tuned DETR model,  resnet50 backbone - 3 classes.
  1. what exact command you run: prepared a single image per normal validation process as the ‘sample’ (resize, tensorize, normalize, unsqueeze to make batch 1, push to gpu). then: traced` = torch.jit.trace(model,single_batch_tensorimg)

  2. what you observed (including full logs):

runtime error - summary error is "Dictionary inputs to traced functions must have consistent type.  Found Found Tensor and List[Dict[str, Tensor]]"

Full error log:
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-83-905883ed8622> in <module>
----> 1 traced = torch.jit.trace(model,single_batch_tensorimg)

~/anaconda3/lib/python3.7/site-packages/torch/jit/__init__.py in trace(func, example_inputs, optimize, check_trace, check_inputs, check_tolerance, strict, _force_outplace, _module_class, _compilation_unit)
    953         return trace_module(func, {'forward': example_inputs}, None,
    954                             check_trace, wrap_check_inputs(check_inputs),
--> 955                             check_tolerance, strict, _force_outplace, _module_class)
    956 
    957     if (hasattr(func, '__self__') and isinstance(func.__self__, torch.nn.Module) and

~/anaconda3/lib/python3.7/site-packages/torch/jit/__init__.py in trace_module(mod, inputs, optimize, check_trace, check_inputs, check_tolerance, strict, _force_outplace, _module_class, _compilation_unit)
   1107             func = mod if method_name == "forward" else getattr(mod, method_name)
   1108             example_inputs = make_tuple(example_inputs)
-> 1109             module._c._create_method_from_trace(method_name, func, example_inputs, var_lookup_fn, strict, _force_outplace)
   1110             check_trace_method = module._c._get_method(method_name)
   1111 

RuntimeError: Tracer cannot infer type of {'pred_logits': tensor([[[-1.3257e+00, -4.5160e+00, -3.3199e+00,  6.2382e+00],
         [-1.2233e+00, -4.2994e+00, -3.4213e+00,  6.4357e+00],
         [-1.7037e+00, -4.1408e+00, -3.2093e+00,  6.6415e+00],
         [-1.9977e+00, -4.2006e+00, -2.9134e+00,  6.6455e+00],
         [-9.1402e-01, -4.1852e+00, -3.3812e+00,  6.2901e+00],
         [-9.0749e-01, -3.8806e+00, -3.7153e+00,  6.6058e+00],
         [-8.6349e-01, -4.2650e+00, -3.2326e+00,  6.3258e+00],
         [-2.1840e+00, -2.8677e+00, -2.8063e+00,  6.0706e+00],
         [-1.4402e+00, -4.1639e+00, -3.0899e+00,  6.0722e+00],
         [-1.0651e+00, -4.3728e+00, -3.3428e+00,  6.2091e+00],
         [-8.4225e-01, -4.3105e+00, -3.2828e+00,  6.3823e+00],
         [-1.3332e+00, -4.4080e+00, -3.4408e+00,  6.4879e+00],
         [-1.9474e+00, -3.7540e+00, -2.2489e+00,  6.4509e+00],
         [-7.6170e-01, -4.3160e+00, -3.2560e+00,  6.5407e+00],
         [-1.5858e+00, -4.7425e+00, -3.0672e+00,  6.5151e+00],
         [-1.2460e+00, -4.2103e+00, -3.4207e+00,  6.0635e+00],
         [-1.4751e+00, -4.3444e+00, -3.3478e+00,  6.2889e+00],
         [-1.5262e+00, -4.0728e+00, -3.1277e+00,  6.4521e+00],
         [-1.3835e+00, -4.4318e+00, -3.2489e+00,  6.8782e+00],
         [-8.3059e-01, -4.1737e+00, -3.5075e+00,  6.5841e+00],
         [-8.6003e-01, -3.9930e+00, -2.8658e+00,  6.1958e+00],
         [-1.1195e+00, -4.1224e+00, -3.1234e+00,  6.4970e+00],
         [-9.7752e-01, -4.3823e+00, -3.3829e+00,  6.2668e+00],
         [-7.1669e-01, -4.2383e+00, -3.4157e+00,  6.5341e+00],
         [-8.8181e-01, -4.0628e+00, -3.1997e+00,  6.2601e+00],
         [-8.2779e-01, -3.9883e+00, -3.1007e+00,  6.1781e+00],
         [-9.9500e-01, -4.2641e+00, -3.5869e+00,  6.4713e+00],
         [-2.0311e+00, -3.2360e+00, -2.9700e+00,  6.1869e+00],
         [-1.4078e+00, -4.7912e+00, -3.1322e+00,  6.5051e+00],
         [-1.2046e+00, -4.3279e+00, -3.5028e+00,  6.2667e+00],
         [-1.1305e+00, -4.1406e+00, -3.4895e+00,  6.6066e+00],
         [-8.5910e-01, -4.4805e+00, -3.1130e+00,  6.4499e+00],
         [-1.5736e+00, -4.5274e+00, -3.1096e+00,  6.2207e+00],
         [-8.7325e-01, -4.3082e+00, -3.4655e+00,  6.5778e+00],
         [-9.6917e-01, -4.2796e+00, -3.6319e+00,  6.5982e+00],
         [-1.0941e+00, -4.3939e+00, -3.3200e+00,  6.4394e+00],
         [-1.0556e+00, -4.3867e+00, -3.3821e+00,  6.5570e+00],
         [-1.8775e+00, -3.5439e+00, -3.1150e+00,  6.2070e+00],
         [-1.2131e+00, -4.0072e+00, -3.0816e+00,  6.3504e+00],
         [-2.3224e+00, -3.3842e+00, -2.3198e+00,  6.0812e+00],
         [-1.0608e+00, -4.1834e+00, -3.5235e+00,  6.3782e+00],
         [-1.0443e+00, -4.2378e+00, -3.4654e+00,  6.3219e+00],
         [-1.0877e+00, -4.1976e+00, -3.4058e+00,  6.5459e+00],
         [-6.2044e-01, -3.1038e+00, -3.2906e+00,  5.6900e+00],
         [-1.2118e+00, -4.2138e+00, -3.4915e+00,  6.2584e+00],
         [-2.3219e+00, -2.5062e+00, -2.4384e+00,  5.7084e+00],
         [-1.1533e+00, -4.0388e+00, -3.1493e+00,  6.2860e+00],
         [-1.0967e+00, -4.6921e+00, -3.2188e+00,  6.5986e+00],
         [-1.0805e+00, -4.2764e+00, -3.4335e+00,  6.3430e+00],
         [-1.8296e+00, -3.2435e+00, -3.0589e+00,  6.0212e+00],
         [-1.0244e+00, -4.3455e+00, -3.3756e+00,  6.2947e+00],
         [-1.2441e+00, -4.2204e+00, -3.3408e+00,  6.4183e+00],
         [-1.3930e+00, -4.6263e+00, -3.2685e+00,  6.3670e+00],
         [-1.0628e+00, -3.7810e+00, -3.2089e+00,  5.7979e+00],
         [-1.6535e+00, -4.3075e+00, -3.3257e+00,  6.6525e+00],
         [-2.1558e+00, -2.8542e+00, -2.5645e+00,  5.9237e+00],
         [-1.2327e+00, -4.3747e+00, -3.3858e+00,  6.2452e+00],
         [-9.7423e-01, -4.3141e+00, -3.4089e+00,  6.4728e+00],
         [-1.1418e+00, -4.2310e+00, -3.5703e+00,  6.5939e+00],
         [-7.1537e-01, -4.1040e+00, -3.5085e+00,  6.1348e+00],
         [-1.4839e+00, -4.0042e+00, -3.1457e+00,  6.0577e+00],
         [-1.7408e+00,  4.1293e+00, -4.9509e-01, -1.5525e+00],
         [-1.0284e+00, -4.2687e+00, -3.3726e+00,  6.2829e+00],
         [-1.3814e+00, -4.1389e+00, -3.3440e+00,  6.1566e+00],
         [-1.0025e+00, -4.3539e+00, -3.3363e+00,  6.3218e+00],
         [-1.5108e+00, -4.3231e+00, -3.2468e+00,  6.5698e+00],
         [-1.2099e+00, -4.1864e+00, -3.3779e+00,  6.1933e+00],
         [-1.6244e+00, -3.8396e+00, -3.2318e+00,  6.2905e+00],
         [-1.4818e+00, -3.9799e+00, -3.2267e+00,  6.1274e+00],
         [-1.0574e+00, -4.0651e+00, -3.4919e+00,  6.4319e+00],
         [-1.2549e+00, -4.1688e+00, -3.5131e+00,  6.4428e+00],
         [ 4.4515e+00,  3.8680e-03, -1.3146e+00, -1.8654e+00],
         [-7.6814e-01, -4.1199e+00, -3.3639e+00,  6.6328e+00],
         [-1.0299e+00, -4.2803e+00, -3.3329e+00,  6.6037e+00],
         [-8.1970e-01, -4.5901e+00, -3.2575e+00,  6.5023e+00],
         [-1.2137e+00, -4.0303e+00, -3.0325e+00,  6.4221e+00],
         [-1.3679e+00, -4.1100e+00, -3.4035e+00,  6.2796e+00],
         [-7.4305e-01, -4.3340e+00, -3.5650e+00,  6.5321e+00],
         [-1.0473e+00, -4.1474e+00, -3.4294e+00,  6.4154e+00],
         [-1.0486e+00, -4.2867e+00, -3.4619e+00,  6.4207e+00],
         [-1.0286e+00, -4.2844e+00, -3.5789e+00,  6.7687e+00],
         [-7.5652e-01, -3.7627e+00, -3.3852e+00,  5.9946e+00],
         [-1.0777e+00, -4.1732e+00, -3.3713e+00,  6.4387e+00],
         [-6.9987e-01, -4.1442e+00, -3.2779e+00,  6.0329e+00],
         [-1.5770e+00, -3.8518e+00, -3.3054e+00,  6.2581e+00],
         [-1.2293e+00, -4.8014e+00, -2.8239e+00,  6.5217e+00],
         [-7.1122e-01, -4.2456e+00, -3.5109e+00,  6.5091e+00],
         [-1.2753e+00, -4.2083e+00, -3.3322e+00,  6.4163e+00],
         [-4.7021e-01, -3.9568e+00, -3.3516e+00,  6.2389e+00],
         [-9.1776e-01, -4.0323e+00, -3.4145e+00,  6.3345e+00],
         [-7.6549e-01, -4.0218e+00, -3.1490e+00,  6.1941e+00],
         [-1.2081e+00, -4.1735e+00, -3.3727e+00,  6.5662e+00],
         [-9.8999e-01, -4.1010e+00, -3.2139e+00,  6.5327e+00],
         [-1.2535e+00, -4.1246e+00, -3.5824e+00,  6.5121e+00],
         [-9.4460e-01, -4.2512e+00, -3.2911e+00,  6.4086e+00],
         [-7.2473e-01, -4.3610e+00, -3.5410e+00,  6.5070e+00],
         [-1.3768e+00, -4.0155e+00, -3.4594e+00,  6.3249e+00],
         [-1.3593e+00, -4.2313e+00, -3.4009e+00,  6.5089e+00],
         [-2.9125e+00, -6.6248e-01,  4.4765e+00, -7.4652e-01],
         [-1.0689e+00, -4.0516e+00, -3.5897e+00,  6.4756e+00]]],
       device='cuda:0', grad_fn=<SelectBackward>), 'pred_boxes': tensor([[[0.4914, 0.4477, 0.8947, 0.7548],
         [0.5291, 0.4641, 0.8433, 0.5586],
         [0.4912, 0.4702, 0.6988, 0.7264],
         [0.6840, 0.4511, 0.4998, 0.5831],
         [0.4970, 0.4911, 0.8647, 0.5582],
         [0.5062, 0.4874, 0.8768, 0.5273],
         [0.4951, 0.5404, 0.9817, 0.3977],
         [0.4263, 0.5440, 0.6654, 0.3528],
         [0.4721, 0.4357, 0.6923, 0.7251],
         [0.4961, 0.4482, 0.9674, 0.7162],
         [0.4957, 0.5516, 0.9916, 0.4525],
         [0.4894, 0.4508, 0.9339, 0.7519],
         [0.5813, 0.5459, 0.6686, 0.3448],
         [0.4983, 0.5499, 0.9455, 0.4293],
         [0.4995, 0.4650, 0.9940, 0.7674],
         [0.4933, 0.4329, 0.7041, 0.7378],
         [0.4930, 0.4378, 0.8551, 0.7548],
         [0.5851, 0.4342, 0.6135, 0.6085],
         [0.5161, 0.4882, 0.7445, 0.5979],
         [0.5108, 0.5296, 0.8478, 0.4747],
         [0.5037, 0.5535, 0.9071, 0.3481],
         [0.5079, 0.5374, 0.9085, 0.4283],
         [0.4912, 0.4524, 0.9914, 0.7348],
         [0.4962, 0.5320, 0.8992, 0.4527],
         [0.5127, 0.5383, 0.9057, 0.3978],
         [0.5108, 0.5544, 0.8970, 0.3692],
         [0.4983, 0.4343, 0.9809, 0.7201],
         [0.4438, 0.4996, 0.6731, 0.4750],
         [0.5694, 0.4991, 0.6922, 0.6957],
         [0.5076, 0.4382, 0.7700, 0.7317],
         [0.5000, 0.4607, 0.8836, 0.6110],
         [0.4932, 0.5476, 0.9992, 0.5053],
         [0.4885, 0.4541, 0.9959, 0.7642],
         [0.5050, 0.5129, 0.7764, 0.5286],
         [0.5005, 0.4495, 0.9250, 0.6592],
         [0.4998, 0.4882, 0.9710, 0.5647],
         [0.4943, 0.4527, 0.9832, 0.7090],
         [0.4539, 0.4514, 0.6784, 0.6066],
         [0.4920, 0.5466, 0.9152, 0.4152],
         [0.7626, 0.5217, 0.3840, 0.3530],
         [0.5153, 0.4426, 0.8132, 0.6955],
         [0.4959, 0.4345, 0.9892, 0.7281],
         [0.5035, 0.4461, 0.9234, 0.6455],
         [0.5035, 0.5573, 0.9327, 0.3174],
         [0.4946, 0.4378, 0.6953, 0.7401],
         [0.3533, 0.5500, 0.5404, 0.3252],
         [0.5398, 0.5231, 0.7213, 0.4283],
         [0.4912, 0.5226, 0.9994, 0.6730],
         [0.4968, 0.4570, 0.7264, 0.6410],
         [0.4413, 0.5372, 0.6804, 0.3830],
         [0.5051, 0.4868, 0.8158, 0.6040],
         [0.5172, 0.4280, 0.7019, 0.6798],
         [0.4862, 0.4567, 0.9995, 0.7663],
         [0.4519, 0.5481, 0.6927, 0.3951],
         [0.4887, 0.4515, 0.9357, 0.7436],
         [0.4121, 0.5410, 0.6361, 0.3439],
         [0.4938, 0.4421, 0.6918, 0.7467],
         [0.4957, 0.5243, 0.9956, 0.4674],
         [0.5030, 0.4340, 0.9764, 0.6499],
         [0.5019, 0.4317, 0.8988, 0.6941],
         [0.4609, 0.4235, 0.6984, 0.7339],
         [0.2117, 0.5438, 0.3544, 0.3137],
         [0.4917, 0.4439, 0.9956, 0.7291],
         [0.4842, 0.4339, 0.7036, 0.7416],
         [0.5047, 0.4434, 0.9468, 0.6899],
         [0.4906, 0.4715, 0.9374, 0.7335],
         [0.5004, 0.4371, 0.8745, 0.7278],
         [0.4769, 0.4211, 0.6882, 0.7038],
         [0.4698, 0.4408, 0.6993, 0.6940],
         [0.5102, 0.4556, 0.8173, 0.6199],
         [0.5031, 0.4379, 0.9853, 0.7267],
         [0.4914, 0.5326, 0.9300, 0.3334],
         [0.5315, 0.5557, 0.7553, 0.3874],
         [0.4991, 0.5213, 0.9842, 0.4994],
         [0.5005, 0.5456, 0.9432, 0.4854],
         [0.5168, 0.5417, 0.8261, 0.4033],
         [0.4930, 0.4339, 0.7079, 0.7174],
         [0.4940, 0.5140, 0.8836, 0.5233],
         [0.5099, 0.4978, 0.7676, 0.5618],
         [0.4982, 0.4456, 0.9477, 0.7125],
         [0.4935, 0.4617, 0.9833, 0.6653],
         [0.4935, 0.5589, 0.9184, 0.3493],
         [0.5057, 0.4839, 0.8128, 0.5647],
         [0.5068, 0.5214, 0.8670, 0.4747],
         [0.4698, 0.4308, 0.7013, 0.7014],
         [0.5683, 0.5551, 0.6711, 0.4762],
         [0.4989, 0.5223, 0.8108, 0.4794],
         [0.5037, 0.4180, 0.9437, 0.6967],
         [0.4983, 0.5587, 0.9043, 0.3711],
         [0.4946, 0.5367, 0.9640, 0.4033],
         [0.4971, 0.5511, 0.9602, 0.3713],
         [0.5127, 0.4491, 0.8125, 0.6487],
         [0.5112, 0.5485, 0.9091, 0.3727],
         [0.5275, 0.4376, 0.8270, 0.5822],
         [0.4979, 0.5453, 0.9824, 0.4286],
         [0.4928, 0.4865, 0.9910, 0.5705],
         [0.4966, 0.4507, 0.7086, 0.6685],
         [0.5273, 0.4258, 0.7093, 0.6504],
         [0.7762, 0.5236, 0.3506, 0.3170],
         [0.5303, 0.4724, 0.7451, 0.5736]]], device='cuda:0',
       grad_fn=<SelectBackward>), 'aux_outputs': [{'pred_logits': tensor([[[-1.2504, -3.5808, -2.8100,  5.6911],
         [-1.7174, -3.4767, -2.2490,  5.6828],
         [-2.6437, -2.7794, -2.5360,  5.6440],
         [-1.6839, -3.5199, -2.1526,  5.7934],
         [-1.5109, -3.4127, -2.5975,  5.5956],
         [-1.5813, -3.1623, -2.2432,  5.2131],
         [-1.7586, -3.6252, -2.3301,  5.7826],
         [-2.6149, -2.6782, -2.6334,  5.6346],
         [-1.7482, -3.2138, -2.6830,  5.6412],
         [-1.9907, -3.3143, -2.4883,  5.7245],
         [-2.0257, -3.4633, -2.2368,  5.9086],
         [-2.1168, -3.2112, -2.7409,  5.8544],
         [-2.5858, -1.8501, -0.0446,  3.2839],
         [-1.9236, -3.5415, -2.3592,  5.9901],
         [-2.4247, -3.6177, -2.2216,  5.9407],
         [-2.5777, -2.1795, -2.2625,  5.3009],
         [-1.3931, -3.3417, -2.6735,  5.5696],
         [-1.4456, -3.4021, -2.2070,  5.7579],
         [-2.0504, -3.1556, -2.1044,  5.7540],
         [-1.1664, -2.6429, -2.5354,  4.8856],
         [-2.0992, -3.2797, -2.1168,  5.6873],
         [-2.5497, -2.6683, -1.5737,  5.1301],
         [-0.8091, -3.5701, -2.5191,  5.1769],
         [-1.4676, -3.6757, -2.5934,  5.6852],
         [-1.7347, -3.1917, -2.1327,  5.6545],
         [-1.8354, -3.2167, -2.1430,  5.5313],
         [-1.0303, -3.7101, -2.0850,  5.3256],
         [-2.7579, -1.6260, -2.1614,  4.8621],
         [-1.8907, -3.5321, -2.2240,  5.7266],
         [-1.1177, -3.5266, -2.5566,  5.4634],
         [-1.4514, -3.6044, -2.6691,  5.6349],
         [-2.3068, -3.4657, -2.2415,  5.7814],
         [-2.2074, -3.5584, -2.5430,  5.9490],
         [-1.2341, -3.5993, -2.2337,  5.5949],
         [-1.1097, -3.6458, -2.2985,  5.4380],
         [-1.6259, -3.4376, -2.5200,  5.6947],
         [-2.0318, -3.0793, -1.9409,  5.4452],
         [-2.8346, -1.4108, -2.2085,  4.8268],
         [-2.3220, -3.2941, -2.4598,  5.8615],
         [-1.4937, -3.3622, -2.2159,  5.7735],
         [-1.3712, -3.4375, -2.2487,  5.6910],
         [-1.3862, -3.5070, -2.1787,  5.6287],
         [-1.4329, -3.4135, -2.4437,  5.6301],
         [-2.2192, -2.2570, -2.4264,  5.1008],
         [-1.6275, -3.1183, -2.6253,  5.6007],
         [-2.6928, -0.7844, -1.8550,  3.8880],
         [-1.5130, -3.2955, -2.2231,  5.7158],
         [-2.2927, -3.5005, -2.1343,  5.9383],
         [-1.2989, -3.4128, -2.6555,  5.5151],
         [-2.3887, -2.8568, -2.6236,  5.6963],
         [-1.9759, -3.4624, -2.4298,  5.7296],
         [-2.0314, -2.9194, -2.0413,  5.6329],
         [-2.4279, -3.4936, -2.3452,  5.8252],
         [-2.2354, -2.5249, -2.5076,  5.4787],
         [-2.3441, -3.2688, -2.6272,  5.9214],
         [-2.9130, -1.3358, -2.1282,  4.7073],
         [-1.4614, -3.3791, -2.8841,  5.7596],
         [-1.5462, -3.5268, -2.1745,  5.6404],
         [-1.6422, -3.4747, -2.3748,  5.6628],
         [-0.0673, -2.7692, -1.3930,  3.5237],
         [-2.5801, -2.2560, -2.4323,  5.5397],
         [-1.8590,  3.4514, -0.7615, -1.0146],
         [-0.9717, -3.5272, -2.5300,  5.2912],
         [-1.9296, -2.9323, -2.7167,  5.6732],
         [-1.2924, -3.5150, -2.2950,  5.7105],
         [-2.5546, -3.2509, -2.3787,  5.8437],
         [-1.1181, -3.5135, -2.5717,  5.4183],
         [-3.0005, -1.0266, -1.6711,  4.0950],
         [-2.0288, -2.9483, -2.7073,  5.6883],
         [-0.8906, -3.5666, -2.4421,  5.2736],
         [-1.1664, -3.5286, -2.3683,  5.5724],
         [ 3.7035, -0.9299, -0.8875, -0.8911],
         [-0.9587, -2.6410, -2.2875,  4.4634],
         [-1.7858, -3.3497, -2.2749,  5.8184],
         [-2.0658, -3.6200, -2.2396,  5.9750],
         [-2.4014, -2.5836, -1.7479,  5.2817],
         [-2.6368, -2.0338, -2.3552,  5.2596],
         [-1.8437, -3.5947, -2.6635,  5.8387],
         [-1.7162, -3.3048, -2.6070,  5.6582],
         [-1.2139, -3.4071, -2.6661,  5.5219],
         [-1.7903, -3.6471, -2.3148,  5.9152],
         [-1.9094, -3.2170, -2.4986,  5.6285],
         [-1.1993, -3.6512, -2.5350,  5.4498],
         [-1.8164, -3.6394, -2.3245,  5.7558],
         [-2.3619, -2.6117, -2.6648,  5.6662],
         [-1.7949, -3.6007, -2.4724,  6.0046],
         [-1.5244, -3.8219, -2.2344,  5.7408],
         [-1.7583, -2.8067, -2.0539,  5.1993],
         [-1.2698, -3.4389, -2.4968,  5.1424],
         [-1.8990, -3.5888, -2.1812,  5.6946],
         [-1.5099, -3.3564, -1.9802,  5.2863],
         [-2.2901, -2.8322, -1.7029,  5.2737],
         [-2.5696, -2.3374, -0.9916,  4.3264],
         [-1.6742, -3.3663, -2.1964,  5.7185],
         [-1.5840, -3.5024, -2.2013,  5.7061],
         [-2.2832, -3.5258, -2.0242,  5.7375],
         [-1.6337, -3.1316, -2.8015,  5.6610],
         [-1.2943, -3.4227, -2.3167,  5.7404],
         [-1.9429, -0.2366,  2.3898, -0.2129],
         [-1.4359, -3.3523, -2.2822,  5.6752]]], device='cuda:0',
       grad_fn=<SelectBackward>), 'pred_boxes': tensor([[[0.4604, 0.5678, 0.6222, 0.5269],
         [0.4946, 0.5053, 0.8159, 0.7065],
         [0.4148, 0.5657, 0.6347, 0.4115],
         [0.5399, 0.5307, 0.7094, 0.6822],
         [0.4803, 0.5292, 0.7044, 0.6569],
         [0.4841, 0.5336, 0.9993, 0.4318],
         [0.4933, 0.5585, 0.7030, 0.5799],
         [0.4228, 0.5797, 0.6753, 0.4620],
         [0.4618, 0.5563, 0.6805, 0.6270],
         [0.4381, 0.5482, 0.6391, 0.6216],
         [0.6543, 0.5640, 0.4959, 0.6476],
         [0.4758, 0.5878, 0.6723, 0.4811],
         [0.7833, 0.5275, 0.3221, 0.3220],
         [0.5726, 0.5871, 0.5710, 0.5618],
         [0.5479, 0.6703, 0.5612, 0.4588],
         [0.3641, 0.5438, 0.5521, 0.3616],
         [0.4648, 0.5407, 0.6449, 0.6546],
         [0.4839, 0.5263, 0.6703, 0.7073],
         [0.5699, 0.6116, 0.6397, 0.6014],
         [0.4879, 0.5457, 0.9130, 0.3709],
         [0.6972, 0.5338, 0.4488, 0.4283],
         [0.7477, 0.5385, 0.3976, 0.3647],
         [0.4946, 0.5956, 0.6173, 0.5494],
         [0.5167, 0.6472, 0.6076, 0.4792],
         [0.5427, 0.5630, 0.9414, 0.6511],
         [0.6177, 0.5298, 0.5622, 0.5124],
         [0.4934, 0.5732, 0.7960, 0.6242],
         [0.2879, 0.5454, 0.4704, 0.3416],
         [0.4724, 0.5305, 0.6666, 0.6638],
         [0.4663, 0.5690, 0.6127, 0.5937],
         [0.4215, 0.5938, 0.5175, 0.4684],
         [0.5199, 0.5942, 0.6701, 0.4964],
         [0.3840, 0.7057, 0.5078, 0.4034],
         [0.4841, 0.5714, 0.7456, 0.6142],
         [0.4984, 0.5840, 0.8158, 0.6057],
         [0.4833, 0.5335, 0.7073, 0.6441],
         [0.5333, 0.5764, 0.6981, 0.5413],
         [0.2634, 0.5400, 0.4128, 0.3290],
         [0.4813, 0.6561, 0.6621, 0.4301],
         [0.4961, 0.5177, 0.7870, 0.7166],
         [0.4853, 0.5454, 0.7149, 0.6733],
         [0.5126, 0.5674, 0.6872, 0.6494],
         [0.5058, 0.5016, 0.9797, 0.7209],
         [0.4124, 0.5561, 0.6832, 0.3856],
         [0.4871, 0.5972, 0.6945, 0.5891],
         [0.2339, 0.5449, 0.3813, 0.3339],
         [0.4890, 0.5264, 0.7567, 0.7111],
         [0.6430, 0.5668, 0.5358, 0.6128],
         [0.4908, 0.5581, 0.7370, 0.4396],
         [0.4553, 0.6075, 0.7086, 0.5344],
         [0.4417, 0.5511, 0.6493, 0.6173],
         [0.6377, 0.5691, 0.4980, 0.6918],
         [0.4388, 0.7091, 0.5929, 0.3743],
         [0.4562, 0.5991, 0.7348, 0.5579],
         [0.4276, 0.6948, 0.6112, 0.3766],
         [0.2637, 0.5457, 0.4123, 0.3296],
         [0.4726, 0.5710, 0.6709, 0.5863],
         [0.4869, 0.5543, 0.9997, 0.6144],
         [0.4832, 0.5539, 0.9925, 0.6163],
         [0.4916, 0.5313, 0.9126, 0.3601],
         [0.4115, 0.5755, 0.6611, 0.5027],
         [0.2074, 0.5450, 0.3423, 0.3132],
         [0.4840, 0.5688, 0.6484, 0.5858],
         [0.4667, 0.5776, 0.6848, 0.6116],
         [0.4871, 0.5390, 0.6446, 0.6618],
         [0.4308, 0.6707, 0.6360, 0.3572],
         [0.4647, 0.5434, 0.6170, 0.6425],
         [0.2198, 0.5445, 0.3444, 0.3269],
         [0.4624, 0.5826, 0.6977, 0.5931],
         [0.4830, 0.5760, 0.6470, 0.5879],
         [0.4814, 0.5632, 0.6707, 0.6164],
         [0.4933, 0.5341, 0.9235, 0.3340],
         [0.4939, 0.5445, 0.9276, 0.3617],
         [0.5657, 0.5838, 0.7674, 0.6033],
         [0.6468, 0.6087, 0.5028, 0.5641],
         [0.7275, 0.5405, 0.4231, 0.4298],
         [0.3388, 0.5471, 0.5081, 0.3577],
         [0.3829, 0.6364, 0.5168, 0.4415],
         [0.4673, 0.5361, 0.6874, 0.6511],
         [0.4704, 0.5534, 0.6298, 0.6429],
         [0.5352, 0.5983, 0.6172, 0.5616],
         [0.4824, 0.5696, 0.8035, 0.5356],
         [0.5149, 0.6210, 0.6139, 0.5142],
         [0.5085, 0.5416, 0.6502, 0.6358],
         [0.4442, 0.6033, 0.6836, 0.5341],
         [0.5524, 0.6150, 0.5663, 0.5509],
         [0.5144, 0.6252, 0.6611, 0.5232],
         [0.6996, 0.5334, 0.4685, 0.4364],
         [0.4957, 0.5508, 0.8883, 0.4110],
         [0.5328, 0.5181, 0.9347, 0.5674],
         [0.5677, 0.5327, 0.7561, 0.5289],
         [0.6944, 0.5367, 0.4802, 0.4249],
         [0.7633, 0.5369, 0.3843, 0.3164],
         [0.5093, 0.5134, 0.9764, 0.7148],
         [0.5165, 0.5672, 0.9942, 0.5952],
         [0.5907, 0.5147, 0.6184, 0.5648],
         [0.4722, 0.5639, 0.6748, 0.6355],
         [0.5123, 0.5160, 0.6655, 0.7074],
         [0.7786, 0.5245, 0.3477, 0.3157],
         [0.5107, 0.5055, 0.9462, 0.7265]]], device='cuda:0',
       grad_fn=<SelectBackward>)}, {'pred_logits': tensor([[[-1.6500, -2.7915, -3.1436,  5.4312],
         [-1.1625, -3.4246, -2.2464,  5.4831],
         [-3.0083, -2.1793, -2.1680,  5.0686],
         [-1.7548, -3.3570, -2.0972,  5.8348],
         [-0.8475, -3.5415, -2.3718,  5.4747],
         [-0.8487, -2.9381, -2.5146,  4.8731],
         [-0.8502, -3.3339, -2.3982,  5.2410],
         [-3.3714, -2.3902, -2.0733,  5.3285],
         [-1.8389, -3.3280, -2.5668,  5.7871],
         [-1.2719, -3.4554, -2.5377,  5.4720],
         [-1.7363, -3.1968, -2.0783,  5.4526],
         [-2.5652, -2.4822, -2.6682,  5.3470],
         [-3.3959, -2.2413, -0.3635,  4.1775],
         [-1.5810, -3.6376, -2.3309,  5.5078],
         [-2.6936, -3.3247, -2.0543,  6.0493],
         [-2.4304, -2.6600, -2.5299,  5.5151],
         [-1.5922, -3.1945, -2.6763,  5.5996],
         [-1.6343, -3.1181, -2.0488,  5.6691],
         [-3.0456, -2.7233, -1.1656,  5.1956],
         [-1.2091, -3.0932, -2.6456,  5.2706],
         [-1.7967, -3.5811, -1.4576,  4.7321],
         [-3.2810, -2.6536, -1.4455,  5.2102],
         [-0.6922, -3.6481, -2.4980,  5.1173],
         [-1.0279, -3.1719, -2.2171,  5.1160],
         [-1.1500, -2.8763, -2.3207,  5.3278],
         [-1.5585, -3.1494, -2.1503,  5.2553],
         [-0.5562, -3.6813, -2.5903,  5.1625],
         [-3.0774, -2.0517, -2.3170,  5.1939],
         [-1.4737, -3.6631, -2.3451,  5.8114],
         [-1.0028, -2.9610, -2.9918,  5.2103],
         [-1.2367, -2.7583, -2.3197,  4.6859],
         [-2.1664, -3.1773, -2.2628,  5.8080],
         [-2.5753, -3.1692, -2.4102,  6.1224],
         [-0.8347, -3.5695, -2.5362,  5.3728],
         [-1.2025, -3.4671, -2.5868,  5.2017],
         [-1.1864, -3.5760, -2.5045,  5.7025],
         [-2.5731, -3.0669, -1.9202,  5.4031],
         [-3.2221, -1.8033, -2.4251,  5.2437],
         [-2.5627, -3.0804, -2.3463,  5.8798],
         [-2.0421, -3.2197, -2.0862,  5.8463],
         [-0.9628, -3.4827, -2.4417,  5.5131],
         [-0.6889, -3.7807, -2.1987,  5.3701],
         [-0.8387, -3.3127, -2.1262,  5.2251],
         [-2.1453, -2.3900, -2.5374,  5.0199],
         [-1.3858, -2.7812, -2.9140,  5.2243],
         [-3.1792, -1.2023, -2.1183,  4.4930],
         [-1.4958, -3.0142, -2.2522,  5.5348],
         [-2.3517, -3.1673, -2.0741,  5.8402],
         [-1.4280, -3.0156, -2.9565,  5.2168],
         [-2.3719, -2.9097, -2.3282,  5.5514],
         [-1.3908, -3.6179, -2.6021,  5.6949],
         [-2.0438, -3.1872, -1.8978,  5.6104],
         [-2.3888, -3.0966, -2.3693,  5.9452],
         [-1.6300, -2.9063, -2.5600,  5.4086],
         [-3.0860, -2.7783, -2.3277,  5.7895],
         [-3.4280, -1.3252, -2.3770,  4.8525],
         [-2.1773, -2.7614, -3.0224,  5.7173],
         [-0.6196, -3.1901, -2.1711,  4.9953],
         [-0.6019, -3.2987, -2.2895,  5.0478],
         [-0.8112, -3.1888, -1.9121,  4.5232],
         [-2.3307, -2.4977, -2.3405,  5.4466],
         [-1.7402,  3.7450, -0.8112, -1.5496],
         [-0.2642, -3.5207, -2.4279,  4.9732],
         [-1.9299, -2.9438, -2.6822,  5.6510],
         [-0.5841, -3.8389, -2.3040,  5.6133],
         [-2.7626, -2.9781, -2.1239,  5.7334],
         [-0.8485, -3.0610, -2.5015,  5.0099],
         [-3.2560, -1.6718, -2.2750,  5.0969],
         [-2.1008, -3.1064, -2.6322,  5.8120],
         [-0.3918, -3.1805, -2.3507,  4.8291],
         [-0.5685, -3.6090, -2.3130,  5.4461],
         [ 3.8248, -0.4455, -0.5164, -1.6635],
         [-1.2142, -2.8344, -2.7436,  4.8697],
         [-1.7848, -2.9460, -2.1537,  5.5382],
         [-1.9505, -3.1606, -1.9869,  5.6989],
         [-2.3788, -2.8860, -1.7778,  5.1813],
         [-3.1216, -2.0013, -2.5002,  5.2550],
         [-2.1499, -2.9026, -2.3163,  5.3898],
         [-1.5119, -3.3686, -2.6113,  5.8128],
         [-1.3604, -3.1144, -2.7825,  5.4365],
         [-1.4920, -3.4651, -2.4586,  5.3295],
         [-1.0875, -3.1580, -2.4765,  5.1716],
         [-0.6646, -3.0004, -2.1291,  4.7016],
         [-0.8419, -3.5948, -2.2256,  5.4344],
         [-2.8410, -2.3441, -2.3497,  5.3130],
         [-1.6268, -3.4865, -2.2048,  5.8213],
         [-1.2152, -3.3844, -2.2169,  5.2241],
         [-1.6030, -3.3270, -2.0410,  5.3373],
         [-1.1779, -3.2011, -2.3970,  4.9374],
         [-0.7314, -3.0841, -2.3147,  4.8985],
         [-1.1215, -3.1661, -2.5295,  5.1939],
         [-2.6078, -2.8395, -1.6961,  5.3535],
         [-2.3633, -2.8395, -1.4931,  4.7564],
         [-1.5178, -3.2933, -2.1866,  5.5775],
         [-0.9147, -3.0284, -2.2748,  5.1922],
         [-1.2472, -3.0956, -2.2667,  5.1220],
         [-1.6271, -3.0285, -2.7366,  5.6759],
         [-1.0379, -3.2832, -2.2338,  5.5998],
         [-2.4184, -0.3453,  3.0088, -0.4882],
         [-1.5080, -3.2473, -2.1650,  5.5897]]], device='cuda:0',
       grad_fn=<SelectBackward>), 'pred_boxes': tensor([[[0.4435, 0.5335, 0.6490, 0.4586],
         [0.4984, 0.4164, 0.9986, 0.6202],
         [0.2734, 0.5520, 0.4552, 0.3693],
         [0.5702, 0.4160, 0.6332, 0.6383],
         [0.4848, 0.4619, 1.0000, 0.6557],
         [0.4862, 0.5400, 1.0000, 0.4781],
         [0.4873, 0.5179, 1.0000, 0.5560],
         [0.2647, 0.5478, 0.3135, 0.3521],
         [0.4616, 0.4520, 0.7353, 0.6962],
         [0.4819, 0.4759, 1.0000, 0.7055],
         [0.5628, 0.5435, 0.6601, 0.5494],
         [0.4766, 0.5598, 0.7217, 0.4352],
         [0.7762, 0.5291, 0.3528, 0.3253],
         [0.5485, 0.5489, 0.7354, 0.4340],
         [0.5547, 0.6926, 0.7873, 0.4258],
         [0.2686, 0.4724, 0.4653, 0.5615],
         [0.4152, 0.4529, 0.6370, 0.6787],
         [0.6711, 0.4442, 0.4861, 0.5198],
         [0.7686, 0.5272, 0.3504, 0.3726],
         [0.5144, 0.5140, 0.9033, 0.4753],
         [0.6027, 0.5356, 0.6319, 0.3717],
         [0.7210, 0.5339, 0.4533, 0.3686],
         [0.5001, 0.5478, 0.9019, 0.5160],
         [0.4886, 0.5671, 0.9998, 0.5277],
         [0.6592, 0.5310, 0.5478, 0.4122],
         [0.6451, 0.5501, 0.5938, 0.4185],
         [0.5018, 0.5069, 0.9308, 0.5592],
         [0.3140, 0.5467, 0.4554, 0.3919],
         [0.5372, 0.4419, 0.9762, 0.6901],
         [0.4765, 0.5458, 0.7323, 0.4238],
         [0.4867, 0.5480, 1.0000, 0.4288],
         [0.4818, 0.5823, 1.0000, 0.5026],
         [0.4830, 0.6588, 1.0000, 0.4594],
         [0.4950, 0.5369, 0.8929, 0.4443],
         [0.5107, 0.5524, 0.9006, 0.4467],
         [0.4858, 0.4542, 1.0000, 0.6567],
         [0.6927, 0.5335, 0.5051, 0.4104],
         [0.2438, 0.5160, 0.4057, 0.4169],
         [0.4839, 0.5479, 0.9998, 0.5697],
         [0.6528, 0.4206, 0.5024, 0.5292],
         [0.5230, 0.4769, 0.7375, 0.5580],
         [0.5291, 0.4864, 0.8320, 0.6253],
         [0.4888, 0.4632, 0.9985, 0.6740],
         [0.4215, 0.5541, 0.7006, 0.3759],
         [0.3839, 0.5476, 0.5896, 0.4090],
         [0.2374, 0.5468, 0.3234, 0.3320],
         [0.6845, 0.5106, 0.4927, 0.4501],
         [0.5214, 0.6020, 0.9908, 0.5296],
         [0.4952, 0.5463, 0.9952, 0.4448],
         [0.4672, 0.5480, 0.7635, 0.4349],
         [0.4852, 0.4622, 0.9998, 0.7699],
         [0.6903, 0.4612, 0.4534, 0.5263],
         [0.4802, 0.6362, 1.0000, 0.4682],
         [0.4807, 0.5294, 0.8114, 0.4868],
         [0.4509, 0.5955, 0.6845, 0.4806],
         [0.2471, 0.5363, 0.4268, 0.3557],
         [0.4079, 0.5413, 0.5972, 0.4363],
         [0.4864, 0.5016, 1.0000, 0.5880],
         [0.4825, 0.4723, 1.0000, 0.6350],
         [0.4924, 0.5040, 0.9254, 0.5326],
         [0.2207, 0.5188, 0.3718, 0.4699],
         [0.2077, 0.5443, 0.3449, 0.3116],
         [0.4970, 0.5391, 0.9060, 0.4792],
         [0.3067, 0.4724, 0.5038, 0.6417],
         [0.5347, 0.4896, 0.7209, 0.6656],
         [0.4830, 0.5919, 0.9157, 0.4869],
         [0.4791, 0.5270, 0.7869, 0.4634],
         [0.2575, 0.5347, 0.4426, 0.4375],
         [0.4318, 0.4813, 0.7001, 0.5998],
         [0.4946, 0.5474, 0.9105, 0.4393],
         [0.5115, 0.4991, 0.7890, 0.5764],
         [0.4906, 0.5336, 0.9247, 0.3336],
         [0.5025, 0.5481, 0.8955, 0.3384],
         [0.6276, 0.5447, 0.5885, 0.4528],
         [0.5294, 0.6384, 0.7434, 0.5068],
         [0.6889, 0.5208, 0.4952, 0.4122],
         [0.2139, 0.5306, 0.3845, 0.3974],
         [0.4910, 0.5644, 0.9567, 0.5233],
         [0.4853, 0.4131, 1.0000, 0.6359],
         [0.4872, 0.5130, 0.7930, 0.4482],
         [0.5180, 0.5424, 0.8669, 0.4290],
         [0.4839, 0.5257, 1.0000, 0.5093],
         [0.4903, 0.5378, 0.9972, 0.4460],
         [0.5006, 0.4859, 0.9946, 0.6789],
         [0.2332, 0.5429, 0.3347, 0.3830],
         [0.5441, 0.5842, 0.7345, 0.5780],
         [0.5114, 0.5470, 0.8986, 0.3870],
         [0.6417, 0.4721, 0.5899, 0.5758],
         [0.5046, 0.5485, 0.9289, 0.4603],
         [0.4857, 0.5313, 1.0000, 0.5369],
         [0.5804, 0.5324, 0.7023, 0.5170],
         [0.7062, 0.4988, 0.4578, 0.4503],
         [0.6902, 0.5344, 0.5039, 0.3537],
         [0.5202, 0.4077, 0.9553, 0.5891],
         [0.5423, 0.5399, 0.7645, 0.5042],
         [0.5001, 0.5282, 0.9981, 0.5460],
         [0.3405, 0.5143, 0.5157, 0.4203],
         [0.5902, 0.4427, 0.6202, 0.6028],
         [0.7771, 0.5233, 0.3448, 0.3143],
         [0.5552, 0.4100, 0.6718, 0.5885]]], device='cuda:0',
       grad_fn=<SelectBackward>)}, {'pred_logits': tensor([[[-1.4231, -2.9854, -2.8175,  5.8054],
         [-1.0688, -3.1451, -1.9913,  5.2892],
         [-2.2668, -2.2551, -2.0935,  5.3384],
         [-2.2930, -3.0509, -2.3439,  6.1837],
         [-0.3857, -3.1018, -2.4049,  5.2037],
         [-0.4172, -2.8127, -2.5592,  5.2967],
         [-0.1772, -2.8594, -2.4700,  5.2208],
         [-2.6316, -2.3948, -2.1473,  5.8397],
         [-1.0754, -3.4004, -2.5016,  5.8086],
         [-0.9364, -3.2111, -2.5882,  5.6272],
         [-1.2814, -3.0725, -2.0933,  5.4641],
         [-1.8306, -2.6572, -2.5809,  5.5190],
         [-2.5935, -2.4510, -0.5497,  4.8935],
         [-1.3579, -3.2580, -2.1144,  5.7502],
         [-2.9793, -3.5588, -1.6405,  5.8022],
         [-1.2079, -2.9609, -2.4564,  5.5147],
         [-1.1592, -3.3643, -2.6971,  5.8965],
         [-1.6293, -3.1758, -1.7289,  5.7704],
         [-2.5603, -2.8904, -1.5268,  6.0258],
         [-1.6527, -3.0394, -2.5868,  5.7763],
         [-1.8605, -3.1928, -1.5969,  5.3262],
         [-2.0028, -2.4993, -1.1249,  5.2402],
         [-0.9432, -3.2229, -2.5962,  5.6276],
         [-0.9028, -3.0440, -2.4930,  5.4841],
         [-1.2124, -3.0218, -1.9411,  5.7027],
         [-1.6408, -3.0563, -1.7618,  5.5005],
         [-0.7354, -3.2734, -2.4202,  5.4369],
         [-2.2038, -2.5064, -2.1167,  5.7239],
         [-1.7384, -3.4724, -2.6246,  5.8576],
         [-1.1197, -3.1313, -2.9491,  5.7304],
         [-0.8632, -2.9101, -2.5362,  5.1129],
         [-1.5062, -3.1172, -2.2261,  5.6268],
         [-2.4600, -3.3812, -2.6840,  6.2146],
         [-1.2011, -3.2752, -2.4849,  5.8270],
         [-1.2211, -3.2926, -2.4304,  5.5794],
         [-0.3876, -3.1259, -2.4386,  5.2451],
         [-1.8785, -3.0099, -1.7789,  5.7546],
         [-2.1598, -2.5278, -2.1110,  5.8583],
         [-1.0620, -2.8968, -2.2855,  5.4242],
         [-2.0634, -3.1955, -2.0007,  6.0761],
         [-0.6662, -3.3848, -2.2469,  5.4752],
         [-0.6792, -3.3040, -2.1194,  5.4110],
         [-0.5684, -3.1767, -2.1038,  5.2438],
         [-1.4119, -2.6081, -2.5424,  5.3156],
         [-1.4367, -2.9236, -2.7233,  5.6171],
         [-2.5253, -2.1629, -1.9071,  5.6778],
         [-1.1680, -3.0122, -1.5060,  5.3812],
         [-2.5888, -3.1524, -2.1023,  6.1741],
         [-1.3286, -2.8386, -2.7702,  5.3292],
         [-1.6407, -2.8293, -2.3317,  5.8231],
         [-0.7324, -3.3081, -2.3558,  5.2729],
         [-1.4734, -3.2299, -1.5420,  5.5400],
         [-2.2989, -3.3367, -2.6485,  6.1313],
         [-0.6450, -2.9306, -2.7030,  5.2167],
         [-2.0550, -2.6860, -2.4078,  5.7369],
         [-2.2476, -2.1310, -1.9005,  5.5592],
         [-1.6438, -3.0448, -2.8049,  5.9452],
         [-0.4286, -2.9496, -2.1185,  5.2636],
         [-0.1255, -2.8942, -2.3951,  5.2833],
         [-0.2177, -2.8967, -1.9466,  4.8758],
         [-1.4949, -2.8404, -2.4574,  5.7899],
         [-1.9299,  3.9416, -0.5631, -1.5091],
         [-1.0772, -3.3255, -2.7333,  5.7596],
         [-1.1553, -3.1691, -2.6078,  5.7869],
         [-0.2924, -3.4447, -2.1180,  5.2366],
         [-1.9532, -2.9933, -2.3763,  5.7377],
         [-1.0900, -3.1266, -2.6527,  5.6877],
         [-2.0086, -2.3956, -2.0749,  5.5983],
         [-0.9961, -3.1074, -2.5959,  5.6631],
         [-0.6606, -3.0797, -2.4826,  5.3518],
         [-0.7554, -3.2609, -2.3134,  5.5423],
         [ 4.0333, -0.1656, -0.3935, -1.9464],
         [-1.6300, -3.0205, -2.5745,  5.5450],
         [-1.4464, -3.0224, -1.8684,  5.7209],
         [-2.2923, -3.3039, -2.0065,  5.7042],
         [-1.8417, -2.8574, -1.3871,  5.4191],
         [-1.8479, -2.5814, -2.3762,  5.5721],
         [-1.8005, -2.8841, -2.5357,  5.4072],
         [-0.9564, -3.2119, -2.5473,  5.6096],
         [-1.0831, -3.2866, -2.7719,  5.8481],
         [-1.1163, -3.0596, -2.2407,  5.4824],
         [-0.5106, -2.8198, -2.5989,  5.4795],
         [-1.0136, -3.1482, -2.5053,  5.4294],
         [-0.5503, -3.2515, -2.2499,  5.2227],
         [-1.8307, -2.6809, -2.4564,  5.7499],
         [-2.1241, -3.6411, -1.9773,  5.6121],
         [-1.2523, -3.1468, -2.3464,  5.5933],
         [-1.0927, -3.2725, -1.6309,  5.2525],
         [-0.8953, -2.9698, -2.5888,  5.4499],
         [-0.0419, -2.8144, -2.4175,  5.2348],
         [-1.0292, -3.0725, -2.1068,  5.4061],
         [-1.8448, -2.8445, -1.2782,  5.4698],
         [-1.8900, -3.0359, -1.5603,  5.3642],
         [-1.5739, -3.0762, -2.2299,  5.9266],
         [-1.0384, -2.9962, -1.9951,  5.5450],
         [-0.2123, -2.9351, -2.4236,  5.2250],
         [-1.3655, -3.1446, -2.7411,  5.9292],
         [-0.9977, -3.2676, -1.8949,  5.6012],
         [-2.3189, -0.4809,  3.7322, -0.5375],
         [-1.2448, -3.1832, -1.9165,  5.6238]]], device='cuda:0',
       grad_fn=<SelectBackward>), 'pred_boxes': tensor([[[0.3452, 0.4236, 0.5137, 0.7136],
         [0.5966, 0.4288, 0.6507, 0.6229],
         [0.2612, 0.5497, 0.4357, 0.4605],
         [0.6839, 0.3533, 0.4651, 0.4353],
         [0.4929, 0.4320, 0.9962, 0.6833],
         [0.4980, 0.4623, 0.9969, 0.6161],
         [0.5167, 0.4669, 0.8921, 0.5866],
         [0.2714, 0.5032, 0.4565, 0.4839],
         [0.2987, 0.4134, 0.4529, 0.7180],
         [0.4916, 0.4285, 0.9138, 0.7579],
         [0.5166, 0.4886, 0.9620, 0.6142],
         [0.4424, 0.4825, 0.6524, 0.5860],
         [0.6539, 0.5351, 0.5402, 0.3493],
         [0.5491, 0.5323, 0.7693, 0.4716],
         [0.6717, 0.7030, 0.5366, 0.3924],
         [0.2654, 0.4112, 0.4170, 0.7247],
         [0.3180, 0.4264, 0.4696, 0.7328],
         [0.6669, 0.4307, 0.5154, 0.5532],
         [0.6458, 0.5412, 0.5122, 0.4214],
         [0.5392, 0.4689, 0.8056, 0.5169],
         [0.6007, 0.5453, 0.6566, 0.3815],
         [0.4893, 0.5343, 0.7789, 0.4097],
         [0.5311, 0.4431, 0.7820, 0.6966],
         [0.5018, 0.4536, 0.9780, 0.6516],
         [0.6033, 0.4404, 0.6700, 0.6404],
         [0.6379, 0.5262, 0.6060, 0.4390],
         [0.5277, 0.4245, 0.9445, 0.7164],
         [0.3239, 0.4782, 0.5292, 0.5347],
         [0.5656, 0.3754, 0.5897, 0.4433],
         [0.4460, 0.4300, 0.6202, 0.6885],
         [0.4916, 0.4875, 0.9995, 0.5495],
         [0.5159, 0.4763, 0.9736, 0.6553],
         [0.5115, 0.5098, 0.6909, 0.7220],
         [0.5284, 0.5017, 0.8627, 0.5313],
         [0.5379, 0.4945, 0.8352, 0.5934],
         [0.4984, 0.4213, 0.9958, 0.7140],
         [0.5095, 0.4925, 0.9329, 0.5776],
         [0.2445, 0.4431, 0.4131, 0.6591],
         [0.4952, 0.4405, 0.9724, 0.6556],
         [0.6943, 0.4029, 0.4380, 0.4537],
         [0.5302, 0.4354, 0.9538, 0.6851],
         [0.5259, 0.4209, 0.8996, 0.7331],
         [0.5095, 0.4579, 0.9880, 0.6413],
         [0.4867, 0.5162, 0.7702, 0.4664],
         [0.4048, 0.4312, 0.5832, 0.6815],
         [0.2863, 0.5430, 0.4358, 0.3623],
         [0.6302, 0.4579, 0.5896, 0.5667],
         [0.6080, 0.4678, 0.6147, 0.7205],
         [0.5002, 0.4845, 0.9566, 0.5778],
         [0.3514, 0.4502, 0.5528, 0.6221],
         [0.5094, 0.4299, 0.8437, 0.7190],
         [0.6541, 0.4285, 0.5521, 0.6735],
         [0.5358, 0.5255, 0.7381, 0.6893],
         [0.3586, 0.4415, 0.5903, 0.6584],
         [0.4502, 0.4177, 0.6587, 0.7150],
         [0.2439, 0.5322, 0.4317, 0.4004],
         [0.3391, 0.4274, 0.5031, 0.7238],
         [0.4957, 0.4544, 0.9982, 0.6779],
         [0.4993, 0.4505, 0.9917, 0.6821],
         [0.5027, 0.4206, 0.9144, 0.6893],
         [0.2686, 0.4217, 0.4246, 0.7322],
         [0.2089, 0.5446, 0.3485, 0.3129],
         [0.5314, 0.4501, 0.9330, 0.6856],
         [0.2908, 0.4217, 0.4504, 0.7331],
         [0.5310, 0.4364, 0.7414, 0.6728],
         [0.4592, 0.4235, 0.7121, 0.7318],
         [0.4755, 0.4225, 0.7031, 0.6971],
         [0.2301, 0.5065, 0.3959, 0.5284],
         [0.3465, 0.4194, 0.5078, 0.7431],
         [0.4989, 0.4861, 0.9501, 0.5636],
         [0.5237, 0.4262, 0.9158, 0.7212],
         [0.4912, 0.5352, 0.9290, 0.3313],
         [0.5392, 0.5367, 0.7641, 0.3953],
         [0.5417, 0.4701, 0.7558, 0.6174],
         [0.5829, 0.6021, 0.6730, 0.4650],
         [0.5954, 0.5055, 0.6446, 0.4591],
         [0.2728, 0.4434, 0.4444, 0.6624],
         [0.4994, 0.4313, 0.7829, 0.7068],
         [0.5099, 0.3872, 0.9722, 0.6102],
         [0.4915, 0.4229, 0.8801, 0.6766],
         [0.5343, 0.4959, 0.8622, 0.5861],
         [0.4965, 0.4514, 0.9941, 0.6664],
         [0.5045, 0.5043, 0.9973, 0.5368],
         [0.5378, 0.4534, 0.7889, 0.6374],
         [0.2370, 0.4365, 0.4008, 0.6881],
         [0.6100, 0.5555, 0.6206, 0.5051],
         [0.5319, 0.5019, 0.8353, 0.5148],
         [0.6205, 0.4127, 0.6338, 0.7021],
         [0.5204, 0.5360, 0.9056, 0.4497],
         [0.5101, 0.4485, 0.9371, 0.6502],
         [0.5966, 0.4728, 0.6990, 0.5794],
         [0.5350, 0.4790, 0.7196, 0.5450],
         [0.6119, 0.5364, 0.6574, 0.3876],
         [0.5811, 0.3825, 0.6973, 0.6082],
         [0.5463, 0.4540, 0.7464, 0.6466],
         [0.5082, 0.4592, 0.9692, 0.6734],
         [0.4029, 0.4363, 0.5727, 0.6946],
         [0.6250, 0.4178, 0.6237, 0.6686],
         [0.7770, 0.5237, 0.3505, 0.3150],
         [0.5973, 0.4250, 0.6790, 0.6539]]], device='cuda:0',
       grad_fn=<SelectBackward>)}, {'pred_logits': tensor([[[-1.1162, -3.7035, -3.0795,  6.1133],
         [-1.2160, -3.5730, -2.2189,  5.3453],
         [-1.9854, -2.3146, -2.5552,  5.7973],
         [-2.0566, -3.0735, -2.3586,  5.9485],
         [-0.8528, -3.4781, -2.6605,  5.7390],
         [-0.3874, -3.1070, -3.0614,  5.8268],
         [-0.7707, -3.2150, -2.7647,  5.6134],
         [-2.1406, -2.1442, -2.4924,  5.5742],
         [-1.3929, -3.7180, -2.6538,  5.8116],
         [-1.1005, -3.7090, -2.8030,  5.8197],
         [-1.0991, -3.4300, -2.6064,  5.7625],
         [-1.4804, -3.1677, -2.9624,  6.0346],
         [-2.2091, -2.6808, -1.3839,  5.2839],
         [-1.0450, -3.3302, -2.3920,  5.4023],
         [-2.7047, -3.9290, -2.1605,  6.4024],
         [-1.2894, -3.5306, -2.8537,  5.7472],
         [-1.2925, -3.8171, -2.8466,  5.9891],
         [-1.5422, -3.1310, -2.0406,  5.3751],
         [-1.8916, -3.2877, -2.4486,  6.3133],
         [-0.8722, -3.2748, -2.8729,  5.7728],
         [-1.5530, -3.1965, -2.0213,  5.2309],
         [-1.6819, -3.0973, -2.1486,  5.8468],
         [-0.6525, -3.8565, -2.8088,  5.8247],
         [-0.9484, -3.2603, -2.8669,  6.0622],
         [-1.1130, -3.3053, -2.5153,  5.5193],
         [-1.4192, -3.1684, -2.2446,  5.1990],
         [-0.6525, -3.7336, -2.7140,  5.7248],
         [-1.8674, -2.2906, -2.4300,  5.5211],
         [-1.3664, -3.7100, -2.7815,  5.8811],
         [-0.8301, -3.7452, -3.1194,  5.9734],
         [-0.5863, -3.2202, -2.9713,  5.8879],
         [-1.5549, -3.4965, -2.6137,  6.0383],
         [-2.1716, -3.9864, -2.8182,  6.6471],
         [-0.8454, -3.4220, -2.7243,  5.8475],
         [-0.7476, -3.5711, -2.7505,  5.8240],
         [-0.8372, -3.5942, -2.6337,  5.5234],
         [-1.2164, -3.5857, -2.6168,  6.2293],
         [-1.8055, -2.5923, -2.4705,  5.3860],
         [-1.4073, -2.9542, -2.6590,  5.7547],
         [-2.2043, -2.7893, -1.9274,  5.4537],
         [-0.5882, -3.7436, -2.5869,  5.5419],
         [-0.7416, -3.7267, -2.4966,  5.5371],
         [-0.6933, -3.5245, -2.5769,  5.9205],
         [-1.0323, -2.4939, -2.8852,  5.2109],
         [-1.1496, -3.5252, -3.0470,  6.0987],
         [-2.0737, -1.8361, -2.1939,  5.1878],
         [-1.3481, -3.1971, -2.0598,  5.1385],
         [-2.1031, -3.7799, -2.4462,  6.1121],
         [-0.9884, -3.1527, -2.9635,  5.6913],
         [-1.5664, -2.6683, -2.5971,  5.3102],
         [-1.0866, -3.6840, -2.5177,  5.5214],
         [-1.2936, -3.6461, -2.2073,  5.4684],
         [-1.8741, -3.9879, -2.8203,  6.4552],
         [-0.7395, -3.1404, -2.8558,  5.0678],
         [-1.9889, -3.1105, -2.8205,  6.2112],
         [-1.9853, -1.9834, -2.3098,  5.5369],
         [-1.2614, -3.5394, -3.1021,  6.1532],
         [-0.8467, -3.2594, -2.5738,  5.5828],
         [-0.5321, -3.3350, -2.8172,  5.7600],
         [-0.6414, -3.3768, -2.4083,  5.2766],
         [-1.3374, -3.2302, -2.6630,  5.6000],
         [-1.9823,  4.1271, -0.4793, -1.5280],
         [-0.8125, -3.7206, -2.9084,  6.0304],
         [-1.3315, -3.5814, -2.8126,  5.8134],
         [-0.6584, -3.7776, -2.3883,  5.4691],
         [-1.7295, -3.2527, -2.7123,  5.9896],
         [-0.9021, -3.6485, -2.9098,  6.0115],
         [-1.7219, -2.8510, -2.4660,  5.8685],
         [-1.2134, -3.4111, -2.7187,  5.5608],
         [-0.6291, -3.2688, -2.8018,  5.8175],
         [-0.6566, -3.7216, -2.6624,  5.6881],
         [ 4.3031,  0.1184, -1.0466, -1.8691],
         [-1.0885, -3.2767, -2.7986,  5.8433],
         [-1.2281, -3.4030, -2.5778,  6.0583],
         [-1.8854, -3.6581, -2.3959,  5.7738],
         [-1.7223, -3.0947, -2.1583,  5.6772],
         [-1.6307, -3.1154, -2.7600,  5.8258],
         [-1.3146, -3.2644, -2.7935,  5.9752],
         [-0.8583, -3.4668, -2.7229,  5.6486],
         [-0.7019, -3.6436, -2.9980,  5.9987],
         [-0.7727, -3.3370, -2.7549,  5.8421],
         [-0.7255, -2.9233, -2.8486,  5.3102],
         [-0.9144, -3.3213, -2.8859,  6.0472],
         [-0.6404, -3.5078, -2.5673,  5.3582],
         [-1.5694, -3.0120, -2.7123,  5.6290],
         [-1.8813, -3.7789, -2.1495,  5.4608],
         [-0.7428, -3.2995, -2.6378,  5.5890],
         [-1.5827, -3.5136, -1.9974,  5.3308],
         [-0.7550, -3.0012, -2.9295,  5.6938],
         [-0.6125, -3.1273, -2.7412,  5.4797],
         [-1.0233, -3.2150, -2.5671,  5.3730],
         [-1.4848, -3.3401, -2.1883,  5.6891],
         [-1.5731, -3.2015, -2.4313,  5.7881],
         [-1.2180, -3.4321, -2.5310,  5.6778],
         [-1.1180, -3.2675, -2.5200,  5.5461],
         [-0.5237, -3.3511, -2.9367,  5.8799],
         [-1.2963, -3.2625, -2.9715,  5.6808],
         [-1.2281, -3.5656, -2.2486,  5.4848],
         [-3.0042, -0.3081,  4.2593, -0.8091],
         [-1.1701, -3.4849, -2.3317,  5.4553]]], device='cuda:0',
       grad_fn=<SelectBackward>), 'pred_boxes': tensor([[[0.1702, 0.4606, 0.2849, 0.7321],
         [0.5229, 0.4664, 0.7909, 0.5886],
         [0.1794, 0.5380, 0.3181, 0.4549],
         [0.6342, 0.4746, 0.4965, 0.5822],
         [0.4871, 0.4810, 0.9909, 0.6433],
         [0.4894, 0.4765, 0.9973, 0.6173],
         [0.4934, 0.5311, 0.9609, 0.4637],
         [0.2162, 0.5345, 0.3881, 0.3895],
         [0.2601, 0.4509, 0.4261, 0.7153],
         [0.4728, 0.4630, 0.7207, 0.7464],
         [0.4880, 0.5489, 0.9970, 0.5006],
         [0.1716, 0.5310, 0.2883, 0.5460],
         [0.5069, 0.5339, 0.8696, 0.3526],
         [0.5004, 0.5490, 0.9000, 0.4269],
         [0.6205, 0.7156, 0.5946, 0.4369],
         [0.2105, 0.4435, 0.3443, 0.7319],
         [0.2432, 0.4403, 0.3907, 0.7508],
         [0.5588, 0.4828, 0.7084, 0.5058],
         [0.4955, 0.5213, 0.8765, 0.4684],
         [0.4902, 0.5435, 0.9792, 0.4820],
         [0.5123, 0.5432, 0.8540, 0.3800],
         [0.4896, 0.5297, 0.9920, 0.4322],
         [0.4779, 0.4921, 0.7076, 0.6520],
         [0.4900, 0.5279, 0.9353, 0.5081],
         [0.4998, 0.5346, 0.8706, 0.4404],
         [0.5207, 0.5507, 0.8463, 0.3923],
         [0.4937, 0.4635, 0.8708, 0.7061],
         [0.2295, 0.5313, 0.4042, 0.4176],
         [0.5295, 0.4830, 0.6036, 0.6269],
         [0.3144, 0.4618, 0.4565, 0.7007],
         [0.4877, 0.5020, 0.9857, 0.5402],
         [0.4901, 0.5578, 0.9758, 0.5342],
         [0.2974, 0.5703, 0.4497, 0.6416],
         [0.4939, 0.5395, 0.9115, 0.4680],
         [0.4899, 0.5215, 0.8905, 0.5683],
         [0.4879, 0.4878, 0.9151, 0.6498],
         [0.4893, 0.4880, 0.9843, 0.6714],
         [0.2185, 0.5207, 0.3928, 0.4724],
         [0.4905, 0.5371, 0.9458, 0.4564],
         [0.7018, 0.5016, 0.4213, 0.4112],
         [0.4879, 0.4914, 0.8177, 0.6248],
         [0.4935, 0.4529, 0.8365, 0.7173],
         [0.4871, 0.4840, 0.9991, 0.6672],
         [0.4775, 0.5481, 0.9031, 0.3607],
         [0.2811, 0.4520, 0.4367, 0.7219],
         [0.2116, 0.5506, 0.3670, 0.3559],
         [0.5244, 0.5215, 0.8424, 0.4114],
         [0.5391, 0.5701, 0.7667, 0.5812],
         [0.4621, 0.5238, 0.6844, 0.5013],
         [0.2304, 0.5351, 0.3946, 0.4050],
         [0.4751, 0.4810, 0.8100, 0.6608],
         [0.5058, 0.4797, 0.7607, 0.6399],
         [0.4294, 0.5329, 0.6049, 0.7048],
         [0.3394, 0.5167, 0.5596, 0.4860],
         [0.1984, 0.4984, 0.3309, 0.6260],
         [0.2048, 0.5215, 0.3719, 0.3858],
         [0.2147, 0.4714, 0.3536, 0.7174],
         [0.4891, 0.5415, 0.9906, 0.5080],
         [0.4897, 0.4724, 0.9985, 0.6923],
         [0.4929, 0.4591, 0.9780, 0.6876],
         [0.2508, 0.4492, 0.4215, 0.7213],
         [0.2106, 0.5442, 0.3519, 0.3156],
         [0.4911, 0.4713, 0.7783, 0.6908],
         [0.2445, 0.4448, 0.4008, 0.7318],
         [0.4928, 0.4719, 0.8208, 0.6396],
         [0.3257, 0.5086, 0.5025, 0.6188],
         [0.4625, 0.4509, 0.6706, 0.7155],
         [0.2037, 0.4770, 0.3550, 0.6187],
         [0.2760, 0.4584, 0.4520, 0.6909],
         [0.4882, 0.4996, 0.9585, 0.5546],
         [0.4878, 0.4604, 0.7394, 0.7019],
         [0.4920, 0.5336, 0.9306, 0.3339],
         [0.5077, 0.5456, 0.8863, 0.3958],
         [0.4878, 0.5201, 0.9987, 0.5524],
         [0.5112, 0.5827, 0.8250, 0.4683],
         [0.4903, 0.5379, 0.9411, 0.4306],
         [0.1927, 0.4942, 0.3308, 0.5906],
         [0.4882, 0.5213, 0.8267, 0.5426],
         [0.4800, 0.4833, 0.8291, 0.6418],
         [0.4834, 0.4752, 0.7484, 0.6918],
         [0.4918, 0.5149, 0.9105, 0.5857],
         [0.4931, 0.5429, 0.9266, 0.4164],
         [0.4894, 0.5239, 0.8400, 0.5194],
         [0.4842, 0.4992, 0.8786, 0.5336],
         [0.2190, 0.4838, 0.3833, 0.5947],
         [0.5852, 0.5808, 0.6921, 0.4246],
         [0.4936, 0.5404, 0.8906, 0.4358],
         [0.4980, 0.4581, 0.7582, 0.6727],
         [0.4950, 0.5393, 0.9369, 0.4023],
         [0.4920, 0.5089, 0.9805, 0.5369],
         [0.5048, 0.5481, 0.8513, 0.4191],
         [0.4832, 0.5249, 0.9516, 0.4689],
         [0.4885, 0.5384, 0.9551, 0.4283],
         [0.4931, 0.4780, 0.9497, 0.6184],
         [0.4896, 0.5500, 0.9681, 0.4385],
         [0.4887, 0.4731, 0.9990, 0.6993],
         [0.3442, 0.5132, 0.5138, 0.5130],
         [0.5190, 0.4620, 0.8191, 0.6131],
         [0.7753, 0.5238, 0.3522, 0.3171],
         [0.5016, 0.4808, 0.8970, 0.5692]]], device='cuda:0',
       grad_fn=<SelectBackward>)}, {'pred_logits': tensor([[[-1.6195e+00, -4.4590e+00, -2.9284e+00,  6.3438e+00],
         [-1.3827e+00, -3.8483e+00, -2.8002e+00,  5.8636e+00],
         [-2.4032e+00, -3.3997e+00, -2.4636e+00,  6.2632e+00],
         [-2.1288e+00, -3.7418e+00, -2.3507e+00,  6.2070e+00],
         [-1.2213e+00, -3.9480e+00, -2.8529e+00,  5.9780e+00],
         [-1.3764e+00, -3.5331e+00, -3.1036e+00,  6.2684e+00],
         [-1.1390e+00, -3.8203e+00, -2.7873e+00,  5.8636e+00],
         [-2.5303e+00, -2.5651e+00, -2.4481e+00,  5.8075e+00],
         [-1.5532e+00, -4.2327e+00, -2.6495e+00,  5.9321e+00],
         [-1.2408e+00, -4.3479e+00, -2.8397e+00,  6.1178e+00],
         [-1.4951e+00, -4.0306e+00, -2.7509e+00,  6.1961e+00],
         [-1.8421e+00, -4.0824e+00, -2.8595e+00,  6.4210e+00],
         [-2.4118e+00, -3.2511e+00, -1.9146e+00,  6.1430e+00],
         [-1.3563e+00, -3.8963e+00, -2.6481e+00,  6.1175e+00],
         [-2.4518e+00, -4.7317e+00, -2.3036e+00,  6.6069e+00],
         [-1.3567e+00, -4.1709e+00, -2.9985e+00,  5.9754e+00],
         [-1.5624e+00, -4.3517e+00, -2.9236e+00,  6.2333e+00],
         [-1.7804e+00, -3.5279e+00, -2.6411e+00,  6.0306e+00],
         [-1.9572e+00, -4.0045e+00, -2.6954e+00,  6.6457e+00],
         [-1.2843e+00, -3.6856e+00, -3.0383e+00,  6.1717e+00],
         [-1.5199e+00, -3.6128e+00, -2.4441e+00,  5.7818e+00],
         [-1.8320e+00, -3.7049e+00, -2.6154e+00,  6.2285e+00],
         [-1.1837e+00, -4.4366e+00, -2.8877e+00,  6.2217e+00],
         [-1.2268e+00, -3.9429e+00, -2.9941e+00,  6.4816e+00],
         [-1.4157e+00, -3.7111e+00, -2.7412e+00,  5.8815e+00],
         [-1.5027e+00, -3.5832e+00, -2.5867e+00,  5.7584e+00],
         [-1.2625e+00, -4.1434e+00, -2.9202e+00,  6.1943e+00],
         [-2.2661e+00, -2.7710e+00, -2.6199e+00,  5.8227e+00],
         [-1.5452e+00, -4.4758e+00, -2.5350e+00,  6.2031e+00],
         [-1.3601e+00, -4.2704e+00, -3.1336e+00,  6.2617e+00],
         [-1.4358e+00, -3.7951e+00, -3.0669e+00,  6.3648e+00],
         [-1.5361e+00, -4.2397e+00, -2.5798e+00,  6.3967e+00],
         [-2.1231e+00, -4.7545e+00, -2.7531e+00,  6.6037e+00],
         [-1.3064e+00, -3.9693e+00, -2.8833e+00,  6.2371e+00],
         [-1.4271e+00, -4.0420e+00, -3.0311e+00,  6.3297e+00],
         [-1.1235e+00, -4.1531e+00, -2.7350e+00,  5.9347e+00],
         [-1.5445e+00, -4.2464e+00, -2.7308e+00,  6.3902e+00],
         [-2.1667e+00, -3.1046e+00, -2.6195e+00,  5.7563e+00],
         [-1.5931e+00, -3.6883e+00, -2.6906e+00,  6.1028e+00],
         [-2.5027e+00, -2.9647e+00, -2.1161e+00,  5.8212e+00],
         [-1.2159e+00, -4.0123e+00, -2.9169e+00,  6.0621e+00],
         [-1.2250e+00, -4.1474e+00, -2.8074e+00,  6.0214e+00],
         [-1.3915e+00, -3.9405e+00, -2.9009e+00,  6.2916e+00],
         [-1.1725e+00, -2.8746e+00, -3.0120e+00,  5.4685e+00],
         [-1.4669e+00, -4.1936e+00, -2.9564e+00,  6.1645e+00],
         [-2.4655e+00, -2.1226e+00, -2.2757e+00,  5.4959e+00],
         [-1.5861e+00, -3.6893e+00, -2.5827e+00,  5.8086e+00],
         [-1.9286e+00, -4.4928e+00, -2.5641e+00,  6.5601e+00],
         [-1.3641e+00, -3.9145e+00, -3.0208e+00,  6.0581e+00],
         [-2.0842e+00, -2.9913e+00, -2.6180e+00,  5.5829e+00],
         [-1.2247e+00, -4.1773e+00, -2.7245e+00,  5.9249e+00],
         [-1.4689e+00, -3.8988e+00, -2.7617e+00,  5.9699e+00],
         [-1.8488e+00, -4.7588e+00, -2.7748e+00,  6.5606e+00],
         [-1.1917e+00, -3.4813e+00, -2.7955e+00,  5.3110e+00],
         [-2.3956e+00, -4.0149e+00, -2.7081e+00,  6.6886e+00],
         [-2.3813e+00, -2.5525e+00, -2.3205e+00,  5.7332e+00],
         [-1.4815e+00, -4.2510e+00, -2.9703e+00,  6.2246e+00],
         [-1.3955e+00, -3.7976e+00, -2.8563e+00,  6.0663e+00],
         [-1.4332e+00, -3.8399e+00, -2.9510e+00,  6.2020e+00],
         [-1.1752e+00, -3.9332e+00, -2.7589e+00,  5.9056e+00],
         [-1.5764e+00, -3.8702e+00, -2.6761e+00,  5.8174e+00],
         [-2.0656e+00,  4.1276e+00, -4.3906e-01, -1.4345e+00],
         [-1.2471e+00, -4.2527e+00, -2.9475e+00,  6.2896e+00],
         [-1.5740e+00, -4.0977e+00, -2.8201e+00,  6.0091e+00],
         [-1.1104e+00, -4.1922e+00, -2.7236e+00,  5.9785e+00],
         [-2.1378e+00, -4.0418e+00, -2.6308e+00,  6.4888e+00],
         [-1.4818e+00, -4.1321e+00, -2.9266e+00,  6.1879e+00],
         [-2.0038e+00, -3.5830e+00, -2.5550e+00,  6.0215e+00],
         [-1.6301e+00, -3.8899e+00, -2.7091e+00,  5.8515e+00],
         [-1.3691e+00, -3.8933e+00, -2.9713e+00,  6.2729e+00],
         [-1.3947e+00, -4.0538e+00, -2.9421e+00,  6.2044e+00],
         [ 4.3452e+00, -2.8690e-03, -1.2556e+00, -1.9017e+00],
         [-1.2634e+00, -3.7075e+00, -2.8204e+00,  6.1854e+00],
         [-1.6534e+00, -3.9514e+00, -2.7208e+00,  6.3711e+00],
         [-1.4873e+00, -4.2531e+00, -2.6164e+00,  6.1156e+00],
         [-1.8539e+00, -3.6203e+00, -2.5836e+00,  6.1172e+00],
         [-1.7158e+00, -3.8673e+00, -2.8349e+00,  6.0272e+00],
         [-1.2710e+00, -3.9977e+00, -3.0403e+00,  6.3519e+00],
         [-1.1534e+00, -3.9524e+00, -2.8002e+00,  5.9601e+00],
         [-1.2766e+00, -4.1817e+00, -2.9220e+00,  6.2540e+00],
         [-1.4688e+00, -4.0363e+00, -2.9055e+00,  6.4675e+00],
         [-1.2079e+00, -3.3657e+00, -2.9877e+00,  5.6439e+00],
         [-1.4096e+00, -3.9031e+00, -3.0698e+00,  6.3509e+00],
         [-9.8401e-01, -3.7624e+00, -2.7551e+00,  5.5333e+00],
         [-1.8545e+00, -3.6251e+00, -2.7463e+00,  5.9438e+00],
         [-1.7581e+00, -4.4184e+00, -2.3085e+00,  6.1497e+00],
         [-1.1907e+00, -3.9245e+00, -2.8815e+00,  6.1389e+00],
         [-1.5773e+00, -3.9300e+00, -2.7206e+00,  5.9558e+00],
         [-1.0606e+00, -3.5542e+00, -3.0294e+00,  6.0895e+00],
         [-1.4166e+00, -3.6723e+00, -2.8987e+00,  6.0354e+00],
         [-1.3823e+00, -3.6085e+00, -2.8037e+00,  5.8583e+00],
         [-1.7279e+00, -3.8922e+00, -2.6499e+00,  6.2398e+00],
         [-1.7093e+00, -3.7567e+00, -2.7649e+00,  6.2483e+00],
         [-1.5017e+00, -3.7128e+00, -2.8925e+00,  5.9712e+00],
         [-1.4966e+00, -3.8514e+00, -2.6731e+00,  6.0206e+00],
         [-1.1200e+00, -4.1016e+00, -2.9189e+00,  6.2101e+00],
         [-1.7542e+00, -3.7218e+00, -2.9580e+00,  6.0476e+00],
         [-1.4632e+00, -3.8406e+00, -2.9112e+00,  6.0628e+00],
         [-3.1172e+00, -5.0856e-01,  4.4328e+00, -7.6503e-01],
         [-1.4182e+00, -3.7123e+00, -2.9029e+00,  5.9989e+00]]],
       device='cuda:0', grad_fn=<SelectBackward>), 'pred_boxes': tensor([[[0.4831, 0.5319, 0.6748, 0.5955],
         [0.5303, 0.4793, 0.8343, 0.5207],
         [0.4420, 0.5738, 0.6661, 0.5213],
         [0.6993, 0.4884, 0.4894, 0.5257],
         [0.5203, 0.5036, 0.8594, 0.5192],
         [0.5145, 0.5104, 0.8863, 0.4615],
         [0.5142, 0.5462, 0.9188, 0.3874],
         [0.3376, 0.5506, 0.5492, 0.3326],
         [0.4104, 0.5135, 0.6020, 0.5497],
         [0.5266, 0.5145, 0.7976, 0.5729],
         [0.5109, 0.5679, 0.9969, 0.4354],
         [0.4717, 0.5606, 0.6730, 0.5274],
         [0.5442, 0.5422, 0.7430, 0.3496],
         [0.5237, 0.5615, 0.9200, 0.3930],
         [0.5604, 0.5628, 0.6212, 0.5938],
         [0.4453, 0.5012, 0.6666, 0.5863],
         [0.4490, 0.4788, 0.6575, 0.6430],
         [0.5806, 0.4787, 0.6582, 0.4769],
         [0.5247, 0.5399, 0.7399, 0.4287],
         [0.5201, 0.5440, 0.9396, 0.4189],
         [0.5217, 0.5497, 0.8925, 0.3481],
         [0.5175, 0.5488, 0.9152, 0.3926],
         [0.5333, 0.5308, 0.7300, 0.5863],
         [0.5173, 0.5495, 0.8851, 0.4150],
         [0.5203, 0.5400, 0.9239, 0.3849],
         [0.5211, 0.5575, 0.8972, 0.3551],
         [0.5277, 0.4936, 0.7905, 0.5897],
         [0.3799, 0.5512, 0.5850, 0.3609],
         [0.5694, 0.5001, 0.6967, 0.5762],
         [0.4984, 0.4928, 0.6746, 0.5845],
         [0.5225, 0.5177, 0.8408, 0.4723],
         [0.5113, 0.5744, 0.9983, 0.4589],
         [0.5331, 0.5235, 0.6810, 0.6517],
         [0.5252, 0.5410, 0.8530, 0.4389],
         [0.5280, 0.5166, 0.8034, 0.4989],
         [0.5259, 0.5123, 0.8828, 0.5264],
         [0.5255, 0.5215, 0.7702, 0.5492],
         [0.3749, 0.5405, 0.5748, 0.4065],
         [0.5079, 0.5651, 0.8727, 0.3719],
         [0.7518, 0.5220, 0.4103, 0.3640],
         [0.5240, 0.4939, 0.8256, 0.5545],
         [0.5263, 0.4829, 0.7970, 0.6086],
         [0.5218, 0.4919, 0.9067, 0.5549],
         [0.5083, 0.5550, 0.9364, 0.3232],
         [0.4482, 0.5063, 0.6469, 0.5696],
         [0.2876, 0.5533, 0.4501, 0.3252],
         [0.5219, 0.5177, 0.8431, 0.3970],
         [0.5153, 0.5823, 0.9911, 0.5523],
         [0.5178, 0.5335, 0.7157, 0.4494],
         [0.3790, 0.5502, 0.5763, 0.3378],
         [0.5212, 0.5263, 0.8309, 0.5019],
         [0.5222, 0.4797, 0.7566, 0.5602],
         [0.5148, 0.5203, 0.7105, 0.6439],
         [0.3888, 0.5488, 0.6089, 0.3771],
         [0.4877, 0.5543, 0.6773, 0.5488],
         [0.3359, 0.5448, 0.5282, 0.3304],
         [0.4417, 0.5335, 0.6581, 0.5375],
         [0.5111, 0.5390, 0.9735, 0.4293],
         [0.5190, 0.4832, 0.8596, 0.5578],
         [0.5106, 0.4779, 0.8847, 0.5794],
         [0.3850, 0.5084, 0.5735, 0.5447],
         [0.2120, 0.5446, 0.3542, 0.3123],
         [0.5302, 0.5176, 0.7469, 0.5867],
         [0.4178, 0.5030, 0.6217, 0.5722],
         [0.5248, 0.4926, 0.8498, 0.5579],
         [0.4975, 0.5560, 0.7114, 0.5328],
         [0.5235, 0.4954, 0.7076, 0.5772],
         [0.4102, 0.5266, 0.6218, 0.4837],
         [0.4073, 0.5210, 0.6183, 0.5172],
         [0.5240, 0.5176, 0.7819, 0.4885],
         [0.5282, 0.4932, 0.7304, 0.5890],
         [0.4913, 0.5331, 0.9302, 0.3316],
         [0.5207, 0.5622, 0.7873, 0.3631],
         [0.5155, 0.5479, 0.9899, 0.4303],
         [0.5215, 0.5806, 0.8828, 0.4227],
         [0.5216, 0.5458, 0.8430, 0.3860],
         [0.4319, 0.5338, 0.6572, 0.4843],
         [0.5203, 0.5456, 0.7951, 0.4592],
         [0.5178, 0.5188, 0.8549, 0.4968],
         [0.5207, 0.5057, 0.7450, 0.5722],
         [0.5211, 0.5263, 0.8715, 0.5075],
         [0.5070, 0.5543, 0.9154, 0.3384],
         [0.5264, 0.5381, 0.7512, 0.4494],
         [0.5134, 0.5181, 0.8871, 0.4635],
         [0.3812, 0.5276, 0.5685, 0.4873],
         [0.5839, 0.5816, 0.6801, 0.3979],
         [0.5215, 0.5488, 0.8670, 0.4045],
         [0.5223, 0.4780, 0.7783, 0.5832],
         [0.5113, 0.5610, 0.9186, 0.3581],
         [0.5165, 0.5303, 0.8985, 0.4189],
         [0.5198, 0.5536, 0.9361, 0.3572],
         [0.5229, 0.5216, 0.7920, 0.4792],
         [0.5166, 0.5513, 0.9085, 0.3657],
         [0.5212, 0.4781, 0.8627, 0.5350],
         [0.5103, 0.5536, 0.9902, 0.3942],
         [0.5056, 0.5165, 0.9755, 0.5147],
         [0.4481, 0.5316, 0.6385, 0.4477],
         [0.5242, 0.4685, 0.8261, 0.5503],
         [0.7750, 0.5241, 0.3524, 0.3153],
         [0.5214, 0.4948, 0.8510, 0.4912]]], device='cuda:0',
       grad_fn=<SelectBackward>)}]}
:Dictionary inputs to traced functions must have consistent type. Found Tensor and List[Dict[str, Tensor]]

 
  1. please simplify the steps as much as possible so they do not require additional resources to run, such as a private dataset.

Expected behavior:

Able to trace and export the traced DETR model for production use 😃 (I confirmed I have the latest DETR source that has the PR from June 4 with the fixes to script the resnet models).

If there are no obvious error in “what you observed” provided above, please tell us the expected behavior.

Environment:

Provide your environment information using the following command:

Collecting environment information...
PyTorch version: 1.6.0
Is debug build: No
CUDA used to build PyTorch: 10.1

OS: Ubuntu 18.04.3 LTS
GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
CMake version: version 3.10.2

Python version: 3.7
Is CUDA available: Yes
CUDA runtime version: 10.1.243
GPU models and configuration: GPU 0: Tesla V100-SXM2-16GB
Nvidia driver version: 435.21
cuDNN version: /usr/local/cuda-10.1/targets/x86_64-linux/lib/libcudnn.so.7.6.3

Versions of relevant libraries:
[pip3] numpy==1.18.5
[pip3] numpydoc==1.1.0
[pip3] torch==1.6.0
[pip3] torchvision==0.7.0
[conda] _pytorch_select           0.2                       gpu_0  
[conda] blas                      1.0                         mkl  
[conda] cudatoolkit               10.1.243             h6bb024c_0  
[conda] mkl                       2020.1                      217  
[conda] mkl-service               2.3.0            py37he904b0f_0  
[conda] mkl_fft                   1.1.0            py37h23d657b_0  
[conda] mkl_random                1.1.1            py37h0573a6f_0  
[conda] numpy                     1.18.5           py37ha1c710e_0  
[conda] numpy-base                1.18.5           py37hde5b4d6_0  
[conda] numpydoc                  1.1.0                      py_0  
[conda] pytorch                   1.6.0           py3.7_cuda10.1.243_cudnn7.6.3_0    pytorch
[conda] torchvision               0.7.0                py37_cu101    pytorch

Issue Analytics

  • State:closed
  • Created 3 years ago
  • Reactions:1
  • Comments:15 (15 by maintainers)

github_iconTop GitHub Comments

1reaction
fmassacommented, Aug 25, 2020

Hey @lessw2020

The torchscript version only support models without aux_loss. This is totally fine for all models for inference, because aux_loss is only used during training.

So what I would recommend you to do is to set aux_loss to False in your model, set it to inference mode, and try scripting it again.

1reaction
fmassacommented, Aug 20, 2020

Hi @lessw2020

1 - NestedTensor.from_tensor_list was renamed to nested_tensor_from_tensor_list in https://github.com/facebookresearch/detr/pull/51 . Here is an example showing how to run a model with torchscript using nested_tensor_from_tensor_list https://github.com/facebookresearch/detr/blob/5e66b4cd15b2b182da347103dd16578d28b49d69/test_all.py#L69-L76 2 - The example above shows that img is a Tensor which has been resized / normalized, no batch dimension (so 3d tensor)

I believe this should be enough to get your example working. As such, I’m closing this issue but let us know if the problem persists

Read more comments on GitHub >

github_iconTop Results From Across the Web

torch.jit.trace — PyTorch 1.13 documentation
Trace a function and return an executable or ScriptFunction that will be optimized ... only on Tensor s and lists, dictionaries, and tuples...
Read more >
torch.jit.trace — PyTorch 1.6.0 documentation
Trace a function and return an executable or ScriptFunction that will be optimized ... only on Tensor s and lists, dictionaries, and tuples...
Read more >
Python API: test/test_jit.py Source File - Caffe2
232 # Running JIT passes requires that we own the graph (with a shared_ptr). 233 # The debug state struct does not own...
Read more >
Torch Script — PyTorch master documentation - API Manual
Using torch.jit.trace , you can take an existing module or python function, provide example inputs, and we run the function, recording the operations ......
Read more >
Can't trace the model using torch.jit.trace - Stack Overflow
ERROR: Graphs differed across invocations! Graph diff: graph(%self.1 : __torch__.FCN_NetModel.Net, %Images : Tensor): %2 : __ ...
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found