question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

Error while running ObjectNav task

See original GitHub issue

❓ Help

I am trying to run objectnav using the script habitat_baseline/rl/ddppo/single_node.sh on 2 GPU machine. I have edited --exp-config flag to habitat_baselines/config/objectnav/ddppo_objectnav.yaml. I am getting the following error log

CHECKPOINT_FOLDER: new_checkpoints
CHECKPOINT_INTERVAL: 50
CMD_TRAILING_OPTS: []
ENV_NAME: NavRLEnv
EVAL:
  SPLIT: val
  USE_CKPT_CONFIG: True
EVAL_CKPT_PATH_DIR: new_checkpoints
LOG_FILE: train.log
LOG_INTERVAL: 10
NUM_PROCESSES: 1
NUM_UPDATES: 10000
ORBSLAM2:
  ANGLE_TH: 0.2617993877991494
  BETA: 100
  CAMERA_HEIGHT: 1.25
  DEPTH_DENORM: 10.0
  DIST_REACHED_TH: 0.15
  DIST_TO_STOP: 0.05
  D_OBSTACLE_MAX: 4.0
  D_OBSTACLE_MIN: 0.1
  H_OBSTACLE_MAX: 1.25
  H_OBSTACLE_MIN: 0.375
  MAP_CELL_SIZE: 0.1
  MAP_SIZE: 40
  MIN_PTS_IN_OBSTACLE: 320.0
  NEXT_WAYPOINT_TH: 0.5
  NUM_ACTIONS: 3
  PLANNER_MAX_STEPS: 500
  PREPROCESS_MAP: True
  SLAM_SETTINGS_PATH: habitat_baselines/slambased/data/mp3d3_small1k.yaml
  SLAM_VOCAB_PATH: habitat_baselines/slambased/data/ORBvoc.txt
RL:
  DDPPO:
    backbone: resnet50
    distrib_backend: NCCL
    num_recurrent_layers: 2
    pretrained: False
    pretrained_encoder: False
    pretrained_weights: data/ddppo-models/gibson-2plus-resnet50.pth
    reset_critic: True
    rnn_type: LSTM
    sync_frac: 0.6
    train_encoder: True
  PPO:
    clip_param: 0.2
    entropy_coef: 0.01
    eps: 1e-05
    gamma: 0.99
    hidden_size: 512
    lr: 2.5e-06
    max_grad_norm: 0.2
    num_mini_batch: 2
    num_steps: 128
    ppo_epoch: 2
    reward_window_size: 50
    tau: 0.95
    use_gae: True
    use_linear_clip_decay: False
    use_linear_lr_decay: False
    use_normalized_advantage: False
    value_loss_coef: 0.5
  REWARD_MEASURE: distance_to_goal
  SLACK_REWARD: -0.01
  SUCCESS_MEASURE: spl
  SUCCESS_REWARD: 2.5
SENSORS: ['DEPTH_SENSOR', 'RGB_SENSOR']
SIMULATOR_GPU_ID: 0
TASK_CONFIG:
  DATASET:
    CONTENT_SCENES: []
    DATA_PATH: data/datasets/objectnav/mp3d/v0/{split}/{split}.json.gz
    SCENES_DIR: data/scene_datasets/
    SPLIT: val
    TYPE: ObjectNav-v1
  ENVIRONMENT:
    ITERATOR_OPTIONS:
      CYCLE: True
      GROUP_BY_SCENE: True
      MAX_SCENE_REPEAT_EPISODES: -1
      MAX_SCENE_REPEAT_STEPS: 10000
      NUM_EPISODE_SAMPLE: -1
      SHUFFLE: True
      STEP_REPETITION_RANGE: 0.2
    MAX_EPISODE_SECONDS: 10000000
    MAX_EPISODE_STEPS: 500
  PYROBOT:
    BASE_CONTROLLER: proportional
    BASE_PLANNER: none
    BUMP_SENSOR:
      TYPE: PyRobotBumpSensor
    DEPTH_SENSOR:
      CENTER_CROP: False
      HEIGHT: 480
      MAX_DEPTH: 5.0
      MIN_DEPTH: 0.0
      NORMALIZE_DEPTH: True
      TYPE: PyRobotDepthSensor
      WIDTH: 640
    LOCOBOT:
      ACTIONS: ['BASE_ACTIONS', 'CAMERA_ACTIONS']
      BASE_ACTIONS: ['go_to_relative', 'go_to_absolute']
      CAMERA_ACTIONS: ['set_pan', 'set_tilt', 'set_pan_tilt']
    RGB_SENSOR:
      CENTER_CROP: False
      HEIGHT: 480
      TYPE: PyRobotRGBSensor
      WIDTH: 640
    ROBOT: locobot
    ROBOTS: ['locobot']
    SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR', 'BUMP_SENSOR']
  SEED: 100
  SIMULATOR:
    ACTION_SPACE_CONFIG: v1
    AGENTS: ['AGENT_0']
    AGENT_0:
      ANGULAR_ACCELERATION: 12.56
      ANGULAR_FRICTION: 1.0
      COEFFICIENT_OF_RESTITUTION: 0.0
      HEIGHT: 0.88
      IS_SET_START_STATE: False
      LINEAR_ACCELERATION: 20.0
      LINEAR_FRICTION: 0.5
      MASS: 32.0
      RADIUS: 0.2
      SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR']
      START_POSITION: [0, 0, 0]
      START_ROTATION: [0, 0, 0, 1]
    DEFAULT_AGENT_ID: 0
    DEPTH_SENSOR:
      HEIGHT: 480
      HFOV: 79
      MAX_DEPTH: 5.0
      MIN_DEPTH: 0.5
      NORMALIZE_DEPTH: True
      POSITION: [0, 0.88, 0]
      TYPE: HabitatSimDepthSensor
      WIDTH: 640
    FORWARD_STEP_SIZE: 0.25
    HABITAT_SIM_V0:
      ALLOW_SLIDING: True
      ENABLE_PHYSICS: False
      GPU_DEVICE_ID: 0
      GPU_GPU: False
      PHYSICS_CONFIG_FILE: ./data/default.phys_scene_config.json
    RGB_SENSOR:
      HEIGHT: 480
      HFOV: 79
      POSITION: [0, 0.88, 0]
      TYPE: HabitatSimRGBSensor
      WIDTH: 640
    SCENE: data/scene_datasets/habitat-test-scenes/van-gogh-room.glb
    SEED: 100
    SEMANTIC_SENSOR:
      HEIGHT: 480
      HFOV: 79
      POSITION: [0, 0.88, 0]
      TYPE: HabitatSimSemanticSensor
      WIDTH: 640
    TILT_ANGLE: 30
    TURN_ANGLE: 30
    TYPE: Sim-v0
  TASK:
    ACTIONS:
      ANSWER:
        TYPE: AnswerAction
      LOOK_DOWN:
        TYPE: LookDownAction
      LOOK_UP:
        TYPE: LookUpAction
      MOVE_FORWARD:
        TYPE: MoveForwardAction
      STOP:
        TYPE: StopAction
      TELEPORT:
        TYPE: TeleportAction
      TURN_LEFT:
        TYPE: TurnLeftAction
      TURN_RIGHT:
        TYPE: TurnRightAction
    ANSWER_ACCURACY:
      TYPE: AnswerAccuracy
    COLLISIONS:
      TYPE: Collisions
    COMPASS_SENSOR:
      TYPE: CompassSensor
    CORRECT_ANSWER:
      TYPE: CorrectAnswer
    DISTANCE_TO_GOAL:
      DISTANCE_TO: VIEW_POINTS
      TYPE: DistanceToGoal
    EPISODE_INFO:
      TYPE: EpisodeInfo
    GOAL_SENSOR_UUID: objectgoal
    GPS_SENSOR:
      DIMENSIONALITY: 2
      TYPE: GPSSensor
    HEADING_SENSOR:
      TYPE: HeadingSensor
    INSTRUCTION_SENSOR:
      TYPE: InstructionSensor
    INSTRUCTION_SENSOR_UUID: instruction
    MEASUREMENTS: ['DISTANCE_TO_GOAL', 'SPL']
    OBJECTGOAL_SENSOR:
      GOAL_SPEC: TASK_CATEGORY_ID
      GOAL_SPEC_MAX_VAL: 50
      TYPE: ObjectGoalSensor
    POINTGOAL_SENSOR:
      DIMENSIONALITY: 2
      GOAL_FORMAT: POLAR
      TYPE: PointGoalSensor
    POINTGOAL_WITH_GPS_COMPASS_SENSOR:
      DIMENSIONALITY: 2
      GOAL_FORMAT: POLAR
      TYPE: PointGoalWithGPSCompassSensor
    POSSIBLE_ACTIONS: ['STOP', 'MOVE_FORWARD', 'TURN_LEFT', 'TURN_RIGHT', 'LOOK_UP', 'LOOK_DOWN']
    PROXIMITY_SENSOR:
      MAX_DETECTION_RADIUS: 2.0
      TYPE: ProximitySensor
    QUESTION_SENSOR:
      TYPE: QuestionSensor
    SENSORS: ['OBJECTGOAL_SENSOR', 'COMPASS_SENSOR', 'GPS_SENSOR']
    SPL:
      DISTANCE_TO: VIEW_POINTS
      SUCCESS_DISTANCE: 0.2
      TYPE: SPL
    SUCCESS_DISTANCE: 0.1
    TOP_DOWN_MAP:
      DRAW_BORDER: True
      DRAW_GOAL_AABBS: True
      DRAW_GOAL_POSITIONS: True
      DRAW_SHORTEST_PATH: True
      DRAW_SOURCE: True
      DRAW_VIEW_POINTS: True
      FOG_OF_WAR:
        DRAW: True
        FOV: 90
        VISIBILITY_DIST: 5.0
      MAP_PADDING: 3
      MAP_RESOLUTION: 1250
      MAX_EPISODE_STEPS: 1000
      NUM_TOPDOWN_MAP_SAMPLE_POINTS: 20000
      TYPE: TopDownMap
    TYPE: ObjectNav-v1
TENSORBOARD_DIR: tb1
TEST_EPISODE_COUNT: 2184
TORCH_GPU_ID: 1
TRAINER_NAME: ppo
VIDEO_DIR: video_dir
VIDEO_OPTION: ['disk', 'tensorboard']
2020-02-20 13:40:17,978 Initializing dataset ObjectNav-v1
2020-02-20 13:40:38,077 Initializing dataset ObjectNav-v1
2020-02-20 13:40:56,217 initializing sim Sim-v0
2020-02-20 13:41:09,272 Initializing task ObjectNav-v1
2020-02-20 13:41:11,333 agent number of parameters: 71371399
Traceback (most recent call last):
  File "habitat_baselines/run.py", line 68, in <module>
    main()
  File "habitat_baselines/run.py", line 38, in main
    run_exp(**vars(args))
  File "habitat_baselines/run.py", line 62, in run_exp
    trainer.train()
  File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 300, in train
    episode_counts,
  File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 146, in _collect_rollout_step
    outputs = self.envs.step([a[0].item() for a in actions])
  File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 339, in step
    return self.wait_step()
  File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 326, in wait_step
    observations.append(read_fn())
  File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 250, in recv
    buf = self._recv_bytes()
  File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 407, in _recv_bytes
    buf = self._recv(4)
  File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 383, in _recv
    raise EOFError
EOFError
Exception ignored in: <bound method VectorEnv.__del__ of <habitat.core.vector_env.VectorEnv object at 0x7efc2f8b1668>>
Traceback (most recent call last):
  File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 468, in __del__
  File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 347, in close
  File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 250, in recv
  File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 407, in _recv_bytes
  File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 375, in _recv
AttributeError: 'NoneType' object has no attribute 'BytesIO'
Traceback (most recent call last):
  File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/runpy.py", line 193, in _run_module_as_main
    "__main__", mod_spec)
  File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/torch-1.4.0-py3.6-linux-x86_64.egg/torch/distributed/launch.py", line 263, in <module>
    main()
  File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/torch-1.4.0-py3.6-linux-x86_64.egg/torch/distributed/launch.py", line 259, in main
    cmd=cmd)
subprocess.CalledProcessError: Command '['/local-scratch/anaconda3/envs/habitat/bin/python', '-u', 'habitat_baselines/run.py', '--exp-config', 'habitat_baselines/config/objectnav/ddppo_objectnav.yaml', '--run-type', 'train']' returned non-zero exit status 1.

Thanks in advance

Issue Analytics

  • State:closed
  • Created 4 years ago
  • Comments:29 (9 by maintainers)

github_iconTop GitHub Comments

2reactions
mathfaccommented, Jul 28, 2020

@erikwijmans, thank you for bringing it up. The PointNav v1 MP3D dataset was updated with remove of that faulty episodes: https://dl.fbaipublicfiles.com/habitat/data/datasets/pointnav/mp3d/v1/pointnav_mp3d_v1.zip. cc @srama2512

1reaction
erikwijmanscommented, Jul 16, 2020

We fixed a bug in the navmeshes a while back that made a few episodes for MP3D pointnav invalid (they shouldn’t have ever been valid and I have no idea how they ever were), this is the script I made for finding/removing them: https://gist.github.com/erikwijmans/e4410f0e12facb87890e919aa264e3fe – They are just train episodes fortunately

@mathfac did the cleaned up versions ever get re-uploaded?

Read more comments on GitHub >

github_iconTop Results From Across the Web

Error while running ObjectNav task · Issue #308 - GitHub
Help I am trying to run objectnav using the script habitat_baseline/rl/ddppo/single_node.sh on 2 GPU machine. I have edited --exp-config ...
Read more >
Auxiliary Tasks and Exploration Enable ObjectGoal Navigation
ObjectGoal Navigation (OBJECTNAV) is an embodied task wherein agents are to navigate to an object instance in an un- seen environment.
Read more >
Getting Started — RoboTHOR ObjectNav Challenge ...
We use a model-agnostic evaluation process to measure the performance of your trained agent. Submissions are ranked on the leaderboard by metric Test...
Read more >
Challenge Overview - EvalAI
Task #2: ObjectNav focuses on egocentric object/scene recognition and a commonsense ... However, no robot moves deterministically — actuation error, ...
Read more >
Plug & Play Modular Transfer Learning for Semantic Visual ...
apply it to multiple target tasks (e.g., ObjectNav, Room- ... reinforcement learning tasks, where models forgo using in- ... and error fashion.
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found