Error while running ObjectNav task
See original GitHub issue❓ Help
I am trying to run objectnav using the script habitat_baseline/rl/ddppo/single_node.sh
on 2 GPU machine. I have edited --exp-config
flag to habitat_baselines/config/objectnav/ddppo_objectnav.yaml
.
I am getting the following error log
CHECKPOINT_FOLDER: new_checkpoints
CHECKPOINT_INTERVAL: 50
CMD_TRAILING_OPTS: []
ENV_NAME: NavRLEnv
EVAL:
SPLIT: val
USE_CKPT_CONFIG: True
EVAL_CKPT_PATH_DIR: new_checkpoints
LOG_FILE: train.log
LOG_INTERVAL: 10
NUM_PROCESSES: 1
NUM_UPDATES: 10000
ORBSLAM2:
ANGLE_TH: 0.2617993877991494
BETA: 100
CAMERA_HEIGHT: 1.25
DEPTH_DENORM: 10.0
DIST_REACHED_TH: 0.15
DIST_TO_STOP: 0.05
D_OBSTACLE_MAX: 4.0
D_OBSTACLE_MIN: 0.1
H_OBSTACLE_MAX: 1.25
H_OBSTACLE_MIN: 0.375
MAP_CELL_SIZE: 0.1
MAP_SIZE: 40
MIN_PTS_IN_OBSTACLE: 320.0
NEXT_WAYPOINT_TH: 0.5
NUM_ACTIONS: 3
PLANNER_MAX_STEPS: 500
PREPROCESS_MAP: True
SLAM_SETTINGS_PATH: habitat_baselines/slambased/data/mp3d3_small1k.yaml
SLAM_VOCAB_PATH: habitat_baselines/slambased/data/ORBvoc.txt
RL:
DDPPO:
backbone: resnet50
distrib_backend: NCCL
num_recurrent_layers: 2
pretrained: False
pretrained_encoder: False
pretrained_weights: data/ddppo-models/gibson-2plus-resnet50.pth
reset_critic: True
rnn_type: LSTM
sync_frac: 0.6
train_encoder: True
PPO:
clip_param: 0.2
entropy_coef: 0.01
eps: 1e-05
gamma: 0.99
hidden_size: 512
lr: 2.5e-06
max_grad_norm: 0.2
num_mini_batch: 2
num_steps: 128
ppo_epoch: 2
reward_window_size: 50
tau: 0.95
use_gae: True
use_linear_clip_decay: False
use_linear_lr_decay: False
use_normalized_advantage: False
value_loss_coef: 0.5
REWARD_MEASURE: distance_to_goal
SLACK_REWARD: -0.01
SUCCESS_MEASURE: spl
SUCCESS_REWARD: 2.5
SENSORS: ['DEPTH_SENSOR', 'RGB_SENSOR']
SIMULATOR_GPU_ID: 0
TASK_CONFIG:
DATASET:
CONTENT_SCENES: []
DATA_PATH: data/datasets/objectnav/mp3d/v0/{split}/{split}.json.gz
SCENES_DIR: data/scene_datasets/
SPLIT: val
TYPE: ObjectNav-v1
ENVIRONMENT:
ITERATOR_OPTIONS:
CYCLE: True
GROUP_BY_SCENE: True
MAX_SCENE_REPEAT_EPISODES: -1
MAX_SCENE_REPEAT_STEPS: 10000
NUM_EPISODE_SAMPLE: -1
SHUFFLE: True
STEP_REPETITION_RANGE: 0.2
MAX_EPISODE_SECONDS: 10000000
MAX_EPISODE_STEPS: 500
PYROBOT:
BASE_CONTROLLER: proportional
BASE_PLANNER: none
BUMP_SENSOR:
TYPE: PyRobotBumpSensor
DEPTH_SENSOR:
CENTER_CROP: False
HEIGHT: 480
MAX_DEPTH: 5.0
MIN_DEPTH: 0.0
NORMALIZE_DEPTH: True
TYPE: PyRobotDepthSensor
WIDTH: 640
LOCOBOT:
ACTIONS: ['BASE_ACTIONS', 'CAMERA_ACTIONS']
BASE_ACTIONS: ['go_to_relative', 'go_to_absolute']
CAMERA_ACTIONS: ['set_pan', 'set_tilt', 'set_pan_tilt']
RGB_SENSOR:
CENTER_CROP: False
HEIGHT: 480
TYPE: PyRobotRGBSensor
WIDTH: 640
ROBOT: locobot
ROBOTS: ['locobot']
SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR', 'BUMP_SENSOR']
SEED: 100
SIMULATOR:
ACTION_SPACE_CONFIG: v1
AGENTS: ['AGENT_0']
AGENT_0:
ANGULAR_ACCELERATION: 12.56
ANGULAR_FRICTION: 1.0
COEFFICIENT_OF_RESTITUTION: 0.0
HEIGHT: 0.88
IS_SET_START_STATE: False
LINEAR_ACCELERATION: 20.0
LINEAR_FRICTION: 0.5
MASS: 32.0
RADIUS: 0.2
SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR']
START_POSITION: [0, 0, 0]
START_ROTATION: [0, 0, 0, 1]
DEFAULT_AGENT_ID: 0
DEPTH_SENSOR:
HEIGHT: 480
HFOV: 79
MAX_DEPTH: 5.0
MIN_DEPTH: 0.5
NORMALIZE_DEPTH: True
POSITION: [0, 0.88, 0]
TYPE: HabitatSimDepthSensor
WIDTH: 640
FORWARD_STEP_SIZE: 0.25
HABITAT_SIM_V0:
ALLOW_SLIDING: True
ENABLE_PHYSICS: False
GPU_DEVICE_ID: 0
GPU_GPU: False
PHYSICS_CONFIG_FILE: ./data/default.phys_scene_config.json
RGB_SENSOR:
HEIGHT: 480
HFOV: 79
POSITION: [0, 0.88, 0]
TYPE: HabitatSimRGBSensor
WIDTH: 640
SCENE: data/scene_datasets/habitat-test-scenes/van-gogh-room.glb
SEED: 100
SEMANTIC_SENSOR:
HEIGHT: 480
HFOV: 79
POSITION: [0, 0.88, 0]
TYPE: HabitatSimSemanticSensor
WIDTH: 640
TILT_ANGLE: 30
TURN_ANGLE: 30
TYPE: Sim-v0
TASK:
ACTIONS:
ANSWER:
TYPE: AnswerAction
LOOK_DOWN:
TYPE: LookDownAction
LOOK_UP:
TYPE: LookUpAction
MOVE_FORWARD:
TYPE: MoveForwardAction
STOP:
TYPE: StopAction
TELEPORT:
TYPE: TeleportAction
TURN_LEFT:
TYPE: TurnLeftAction
TURN_RIGHT:
TYPE: TurnRightAction
ANSWER_ACCURACY:
TYPE: AnswerAccuracy
COLLISIONS:
TYPE: Collisions
COMPASS_SENSOR:
TYPE: CompassSensor
CORRECT_ANSWER:
TYPE: CorrectAnswer
DISTANCE_TO_GOAL:
DISTANCE_TO: VIEW_POINTS
TYPE: DistanceToGoal
EPISODE_INFO:
TYPE: EpisodeInfo
GOAL_SENSOR_UUID: objectgoal
GPS_SENSOR:
DIMENSIONALITY: 2
TYPE: GPSSensor
HEADING_SENSOR:
TYPE: HeadingSensor
INSTRUCTION_SENSOR:
TYPE: InstructionSensor
INSTRUCTION_SENSOR_UUID: instruction
MEASUREMENTS: ['DISTANCE_TO_GOAL', 'SPL']
OBJECTGOAL_SENSOR:
GOAL_SPEC: TASK_CATEGORY_ID
GOAL_SPEC_MAX_VAL: 50
TYPE: ObjectGoalSensor
POINTGOAL_SENSOR:
DIMENSIONALITY: 2
GOAL_FORMAT: POLAR
TYPE: PointGoalSensor
POINTGOAL_WITH_GPS_COMPASS_SENSOR:
DIMENSIONALITY: 2
GOAL_FORMAT: POLAR
TYPE: PointGoalWithGPSCompassSensor
POSSIBLE_ACTIONS: ['STOP', 'MOVE_FORWARD', 'TURN_LEFT', 'TURN_RIGHT', 'LOOK_UP', 'LOOK_DOWN']
PROXIMITY_SENSOR:
MAX_DETECTION_RADIUS: 2.0
TYPE: ProximitySensor
QUESTION_SENSOR:
TYPE: QuestionSensor
SENSORS: ['OBJECTGOAL_SENSOR', 'COMPASS_SENSOR', 'GPS_SENSOR']
SPL:
DISTANCE_TO: VIEW_POINTS
SUCCESS_DISTANCE: 0.2
TYPE: SPL
SUCCESS_DISTANCE: 0.1
TOP_DOWN_MAP:
DRAW_BORDER: True
DRAW_GOAL_AABBS: True
DRAW_GOAL_POSITIONS: True
DRAW_SHORTEST_PATH: True
DRAW_SOURCE: True
DRAW_VIEW_POINTS: True
FOG_OF_WAR:
DRAW: True
FOV: 90
VISIBILITY_DIST: 5.0
MAP_PADDING: 3
MAP_RESOLUTION: 1250
MAX_EPISODE_STEPS: 1000
NUM_TOPDOWN_MAP_SAMPLE_POINTS: 20000
TYPE: TopDownMap
TYPE: ObjectNav-v1
TENSORBOARD_DIR: tb1
TEST_EPISODE_COUNT: 2184
TORCH_GPU_ID: 1
TRAINER_NAME: ppo
VIDEO_DIR: video_dir
VIDEO_OPTION: ['disk', 'tensorboard']
2020-02-20 13:40:17,978 Initializing dataset ObjectNav-v1
2020-02-20 13:40:38,077 Initializing dataset ObjectNav-v1
2020-02-20 13:40:56,217 initializing sim Sim-v0
2020-02-20 13:41:09,272 Initializing task ObjectNav-v1
2020-02-20 13:41:11,333 agent number of parameters: 71371399
Traceback (most recent call last):
File "habitat_baselines/run.py", line 68, in <module>
main()
File "habitat_baselines/run.py", line 38, in main
run_exp(**vars(args))
File "habitat_baselines/run.py", line 62, in run_exp
trainer.train()
File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 300, in train
episode_counts,
File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 146, in _collect_rollout_step
outputs = self.envs.step([a[0].item() for a in actions])
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 339, in step
return self.wait_step()
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 326, in wait_step
observations.append(read_fn())
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 250, in recv
buf = self._recv_bytes()
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 383, in _recv
raise EOFError
EOFError
Exception ignored in: <bound method VectorEnv.__del__ of <habitat.core.vector_env.VectorEnv object at 0x7efc2f8b1668>>
Traceback (most recent call last):
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 468, in __del__
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 347, in close
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 250, in recv
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 407, in _recv_bytes
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 375, in _recv
AttributeError: 'NoneType' object has no attribute 'BytesIO'
Traceback (most recent call last):
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/torch-1.4.0-py3.6-linux-x86_64.egg/torch/distributed/launch.py", line 263, in <module>
main()
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/torch-1.4.0-py3.6-linux-x86_64.egg/torch/distributed/launch.py", line 259, in main
cmd=cmd)
subprocess.CalledProcessError: Command '['/local-scratch/anaconda3/envs/habitat/bin/python', '-u', 'habitat_baselines/run.py', '--exp-config', 'habitat_baselines/config/objectnav/ddppo_objectnav.yaml', '--run-type', 'train']' returned non-zero exit status 1.
Thanks in advance
Issue Analytics
- State:
- Created 4 years ago
- Comments:29 (9 by maintainers)
Top Results From Across the Web
Error while running ObjectNav task · Issue #308 - GitHub
Help I am trying to run objectnav using the script habitat_baseline/rl/ddppo/single_node.sh on 2 GPU machine. I have edited --exp-config ...
Read more >Auxiliary Tasks and Exploration Enable ObjectGoal Navigation
ObjectGoal Navigation (OBJECTNAV) is an embodied task wherein agents are to navigate to an object instance in an un- seen environment.
Read more >Getting Started — RoboTHOR ObjectNav Challenge ...
We use a model-agnostic evaluation process to measure the performance of your trained agent. Submissions are ranked on the leaderboard by metric Test...
Read more >Challenge Overview - EvalAI
Task #2: ObjectNav focuses on egocentric object/scene recognition and a commonsense ... However, no robot moves deterministically — actuation error, ...
Read more >Plug & Play Modular Transfer Learning for Semantic Visual ...
apply it to multiple target tasks (e.g., ObjectNav, Room- ... reinforcement learning tasks, where models forgo using in- ... and error fashion.
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
@erikwijmans, thank you for bringing it up. The PointNav v1 MP3D dataset was updated with remove of that faulty episodes: https://dl.fbaipublicfiles.com/habitat/data/datasets/pointnav/mp3d/v1/pointnav_mp3d_v1.zip. cc @srama2512
We fixed a bug in the navmeshes a while back that made a few episodes for MP3D pointnav invalid (they shouldn’t have ever been valid and I have no idea how they ever were), this is the script I made for finding/removing them: https://gist.github.com/erikwijmans/e4410f0e12facb87890e919aa264e3fe – They are just train episodes fortunately
@mathfac did the cleaned up versions ever get re-uploaded?