VTK/GLEW Error when use both habitat-lab and Mayavi
See original GitHub issue❓ Question
I wrote a script about using RGB & depth images to reconstruct a 3D map and display it using Mayavi
. However, I met an extremely weird bug. I found that I can not show the Mayavi 3D image and its screenshot after creating a habitat environment.
Command
To Reproduce
- Here is the
reconstruction.py
script:
import quaternion
import numpy as np
import random
from PIL import Image
from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
from matplotlib.axes._axes import _log as matplotlib_axes_logger
from Env.habitat_dataset.NavRL_env import NavRLEnv
from habitat.config import Config
matplotlib_axes_logger.setLevel('ERROR')
np.warnings.filterwarnings('ignore')
def example_config():
# task_config = habitat.get_config(
# config_paths='/home/skylark/datasets/habitat/configs/tasks/objectnav_mp3d.yaml')
task_config = habitat.get_config(
config_paths='/home/skylark/datasets/habitat/configs/tasks/objectnav_mp3d.yaml')
task_config.defrost()
task_config.DATASET.DATA_PATH = '/home/skylark/datasets/habitat/data/datasets/objectnav/mp3d/v1/val/val.json.gz'
task_config.DATASET.DATA_PATH_DIR = '/home/skylark/datasets/habitat/data/datasets/objectnav/mp3d/v1/val/content'
task_config.DATASET.SCENES_DIR = '/home/skylark/datasets/habitat/data/scene_datasets'
task_config.SIMULATOR.AGENT_0.SENSORS = ['RGB_SENSOR', 'DEPTH_SENSOR', 'SEMANTIC_SENSOR']
task_config.SIMULATOR.TURN_ANGLE = 30
task_config.freeze()
env_config = {
'TASK_CONFIG': task_config,
'RL': {
'SUCCESS_REWARD': 2.5,
'SLACK_REWARD': -1e-3,
'REWARD_MEASURE': "distance_to_goal",
'SUCCESS_MEASURE': "spl",
'EPISODE_LENGTH': 300
}
}
return env_config
class HabitatEnv:
def __init__(self, config):
self.config = Config(config)
self.config.freeze()
self.scene_path = '/home/skylark/datasets/habitat/data/scene_datasets/mp3d'
self.eng = NavRLEnv(config=self.config)
self.eng.reset()
def from_depth_to_xyz(depth, cam2world, hfov=90):
"""[summary]
===>input coordinate (2D)
width(e.g. 640)
o--------------> y (second axis)
|
height |
(e.g.480)↓
x (first axis)
===>output coordinate (3D) (openGL coordinates convention)
the robot is facing [-z] direction
x <-------o
/|
/ |
↙ |
z |
↓ y
Args:
1. must given
depth ([type]): assuming image rgb input shape: [480, 640] [height, width, 3]
cam2world ([type]): [4, 4]
2. intrinsics
hfov (int, optional): [description]. Defaults to 90.
Returns:
[type]: returns of shape [3, height*width]. -> can be reshaped [3, height, width]
"""
height, width = depth.shape
## https://github.com/facebookresearch/habitat-lab/issues/474
## https://doc.magnum.graphics/magnum/classMagnum_1_1Math_1_1Matrix4.html#a6475b3ef155c9142b890c8133504ae9b
K = np.array([
[1 / np.tan(np.radians(hfov / 2.)), 0., 0., 0.],
[0., (float(width) / height) * (1.0 / np.tan(np.radians(hfov / 2.))), 0., 0.],
[0., 0., 1, 0],
[0., 0., 0, 1]])
## calc width, height
# Now get an approximation for the true world coordinates -- see if they make sense
# [-1, 1] for x and [1, -1] for y as array indexing is y-down while world is y-up
xs, ys = np.meshgrid(np.linspace(-1, 1, width), np.linspace(1, -1, height))
depth = depth.reshape(1, height, width)
xs = xs.reshape(1, height, width)
ys = ys.reshape(1, height, width)
# Unproject
# negate depth as the camera looks along -Z
xyzs = np.vstack((xs * depth, ys * depth, -depth, np.ones(depth.shape)))
xyzs = xyzs.reshape(4, -1)
xyzs_world = np.matmul(np.linalg.inv(K), xyzs)
xyzs_world = cam2world.dot(xyzs_world) # (4, height * width)
xyz_world_coord = xyzs_world[0:3].reshape(3, height, width) # (3, height, width)
return xyz_world_coord
########### =================== test ======================= #################
import cv2
from mayavi import mlab
class Recontruction_test():
def __init__(self):
## other related
self.xyz_points = np.empty([3, 0], dtype=np.float)
self.xyz_colors = np.empty([3, 0], dtype=np.uint8)
def plot_3d(self, rgb, depth, index, cam2world=None, pos_rot=None, ax=None):
# if ax is None:
# ax = plt.subplot2grid((1, 1), (0, 0), colspan=1)
# 删除噪点 TODO
depth[depth < 0.15] = 0
depth[depth >= 4.8] = 0
if pos_rot is not None: # (x, z, -y)
robot_pos, robot_rot = pos_rot
if cam2world is None:
cam2world = from_pos_rot_to_camera_extrinsic(robot_pos, robot_rot)
# 根据内外参以及当前一帧的 depth image 生成当前帧 depth_scan 对应的坐标
xyzs_world = from_depth_to_xyz(depth, cam2world).reshape(3, -1)
# 历史坐标汇总在一起 (3, xxx)
self.xyz_points = np.concatenate([self.xyz_points, xyzs_world], axis=1)
# 历史坐标对应的 rgb 值 (3, xxx)
self.xyz_colors = np.concatenate([self.xyz_colors, rgb.transpose((2, 0, 1)).reshape(3, -1)], axis=1)
# 绘制二维散点Voronoi图
# self.plot_2d(rgb, depth, index, cam2world=cam2world)
rgba = np.concatenate([self.xyz_colors.transpose((1, 0)), 255 * np.ones([self.xyz_colors.shape[1], 1])],
axis=1).astype(np.uint8)
x, y, z = self.xyz_points
# ax1 = plt.subplot(111, projection='3d') # 创建一个三维的绘图工程
# # 将数据点分成三部分画,在颜色上有区分度
# ax1.scatter(x, y, z, c='lightblue') # 绘制数据点
# ax1.set_zlabel('Z') # 坐标轴
# ax1.set_ylabel('Y')
# ax1.set_xlabel('X')
# plt.show()
pts = mlab.pipeline.scalar_scatter(x, y, z)
pts.add_attribute(rgba, 'colors') # assign the colors to each point
pts.data.point_data.set_active_scalars('colors')
g = mlab.pipeline.glyph(pts)
# g.glyph.glyph.scale_factor = 0.05 # set scaling for all the points
g.glyph.glyph.scale_factor = 0.1 # set scaling for all the points
g.glyph.scale_mode = 'data_scaling_off' # make all the points same size
# s = np.ones_like(x) * 0.5
# import pylab
# mlab.points3d(x, y, z, s, colormap="copper", scale_factor=.25)
f = mlab.gcf()
f.scene._lift()
arr = mlab.screenshot(figure=g, mode='rgb', antialiased=True)
img_RGB = Image.fromarray(arr).convert('RGB')
import pylab as pl
# ax.imshow(img_RGB)
# ax.axis('off')
# ax.set_title('Reconstruction')
# plt.pause(1)
# ax.clear()
# mlab.show()
return img_RGB
if __name__ == "__main__":
# For test the display of reconstruction and its screenshot
import pickle
from skimage.transform import resize
env_config = example_config()
env = HabitatEnv(env_config)
recontruction = Recontruction_test()
camera2world0 = np.eye(4)
# fig = plt.figure(figsize=[10, 8])
ax = plt.subplot2grid((1, 1), (0, 0), colspan=1)
for i in range(21, 33):
rgb = pickle.load(open("/home/skylark/PycharmRemote/ReGReT/Utils/new_data/rgb{}.pkl".format(i), 'rb'))
depth = pickle.load(open("/home/skylark/PycharmRemote/ReGReT/Utils/new_data/depth{}.pkl".format(i), 'rb'))
rgb = resize(rgb, (240, 320, 3))
rgb = np.asarray(rgb) * 255
depth = resize(depth, (240, 320))
angle = i * 2 * np.pi / 12.
camera2world = rotate_m(angle).dot(camera2world0)
# recontruction.plot_2d(rgb, depth, i, cam2world=camera2world, pos_rot=[[0, -0.08, 0], None], visible_flag=True,
# ax=ax)
# plt.show()
img_RGB = recontruction.plot_3d(rgb, depth, i, cam2world=camera2world, pos_rot=[[0, -0.08, 0], None], ax=ax)
ax.imshow(img_RGB)
ax.axis('off')
ax.set_title('Reconstruction')
plt.pause(0.1)
- Here is the
NavRL_env.py
:
from typing import Optional, Type
import habitat
from habitat import Config, Dataset
from habitat_baselines.common.baseline_registry import baseline_registry
# for top-down map vis
from habitat.utils.visualizations import maps
def get_env_class(env_name: str) -> Type[habitat.RLEnv]:
r"""Return environment class based on name.
Args:
env_name: name of the environment.
Returns:
Type[habitat.RLEnv]: env class.
"""
return baseline_registry.get_env(env_name)
@baseline_registry.register_env(name="NavRLEnv")
class NavRLEnv(habitat.RLEnv):
def __init__(self, config: Config, dataset: Optional[Dataset] = None):
self._rl_config = config.RL
self._core_env_config = config.TASK_CONFIG
self._reward_measure_name = self._rl_config.REWARD_MEASURE
self._success_measure_name = self._rl_config.SUCCESS_MEASURE
self._previous_measure = None
self._previous_action = None
super().__init__(self._core_env_config, dataset)
def reset(self):
self._previous_action = None
observations = super().reset()
self._previous_measure = self._env.get_metrics()[
self._reward_measure_name
]
return observations
def step(self, *args, **kwargs):
self._previous_action = kwargs
return super().step(*args, **kwargs)
def get_reward_range(self):
return (
self._rl_config.SLACK_REWARD - 1.0,
self._rl_config.SUCCESS_REWARD + 1.0,
)
def get_reward(self, observations) -> object:
reward = self._rl_config.SLACK_REWARD
current_measure = self._env.get_metrics()[self._reward_measure_name]
reward += self._previous_measure - current_measure
self._previous_measure = current_measure
if self._episode_success():
reward += self._rl_config.SUCCESS_REWARD
return reward
def _episode_success(self):
return self._env.get_metrics()[self._success_measure_name]
def get_done(self, observations):
done = False
if self._env.episode_over or self._episode_success():
done = True
return done
def get_info(self, observations):
return self.habitat_env.get_metrics()
# for map vis
def get_topdown_map(self, square_map_resolution=5000):
top_down_map = maps.get_topdown_map(
self._env.sim,
map_resolution=(square_map_resolution,square_map_resolution))
## 0: unoccupied
## 1: occupied
## 2: border
return top_down_map
- Just run the
reconstruction.py
, the rgb&depth images mentioned for the test in the main function can be downloaded from here.
Error Log
2020-12-19 17:12:03.419 ( 35.411s) [ 5EBF740]vtkOpenGLRenderWindow.c:569 ERR| vtkXOpenGLRenderWindow (0x555c3b2b3140): GLEW could not be initialized: Unknown error
2020-12-19 17:12:03.419 ( 35.412s) [ 5EBF740] vtkOpenGLState.cxx:1380 WARN| Hardware does not support the number of textures defined.
2020-12-19 17:12:03.419 ( 35.412s) [ 5EBF740] vtkOpenGLState.cxx:1380 WARN| Hardware does not support the number of textures defined.
2020-12-19 17:12:04.330 ( 36.323s) [ 5EBF740] vtkOpenGLState.cxx:1380 WARN| Hardware does not support the number of textures defined.
2020-12-19 17:12:07.734 ( 39.727s) [ 5EBF740] vtkOpenGLState.cxx:1380 WARN| Hardware does not support the number of textures defined.
2020-12-19 17:12:12.712 ( 44.705s) [ 5EBF740] vtkOpenGLState.cxx:1380 WARN| Hardware does not support the number of textures defined.
2020-12-19 17:12:19.359 ( 51.352s) [ 5EBF740] vtkOpenGLState.cxx:1380 WARN| Hardware does not support the number of textures defined.
2020-12-19 17:12:27.739 ( 59.732s) [ 5EBF740] vtkOpenGLState.cxx:1380 WARN| Hardware does not support the number of textures defined.
2020-12-19 17:12:37.325 ( 69.317s) [ 5EBF740] vtkOpenGLState.cxx:1380 WARN| Hardware does not support the number of textures defined.
2020-12-19 17:12:48.577 ( 80.569s) [ 5EBF740] vtkOpenGLState.cxx:1380 WARN| Hardware does not support the number of textures defined.
2020-12-19 17:13:01.507 ( 93.499s) [ 5EBF740] vtkOpenGLState.cxx:1380 WARN| Hardware does not support the number of textures defined.
2020-12-19 17:13:16.279 ( 108.271s) [ 5EBF740] vtkOpenGLState.cxx:1380 WARN| Hardware does not support the number of textures defined.
2020-12-19 17:13:32.934 ( 124.926s) [ 5EBF740] vtkOpenGLState.cxx:1380 WARN| Hardware does not support the number of textures defined.
2020-12-19 17:13:51.069 ( 143.062s) [ 5EBF740] vtkOpenGLState.cxx:1380 WARN| Hardware does not support the number of textures defined.
2020-12-19 17:14:11.383 ( 163.376s) [ 5EBF740] vtkOpenGLState.cxx:1380 WARN| Hardware does not support the number of textures defined.
I1219 17:14:13.038286 19251 PhysicsManager.cpp:33] Deconstructing PhysicsManager
I1219 17:14:13.038314 19251 SemanticScene.h:41] Deconstructing SemanticScene
I1219 17:14:13.041451 19251 SceneManager.h:25] Deconstructing SceneManager
I1219 17:14:13.041463 19251 SceneGraph.h:26] Deconstructing SceneGraph
I1219 17:14:13.042546 19251 Sensor.h:81] Deconstructing Sensor
I1219 17:14:13.042873 19251 Sensor.h:81] Deconstructing Sensor
I1219 17:14:13.043201 19251 Sensor.h:81] Deconstructing Sensor
I1219 17:14:13.043211 19251 SceneGraph.h:26] Deconstructing SceneGraph
I1219 17:14:13.055938 19251 Renderer.cpp:34] Deconstructing Renderer
I1219 17:14:13.055974 19251 WindowlessContext.h:17] Deconstructing WindowlessContext
I1219 17:14:14.646723 19251 Simulator.cpp:46] Deconstructing Simulator
Process finished with exit code 0
Here is the wrong display:
Expected behavior
If I delete this line in the main function in reconstruction.py
:
env = HabitatEnv(env_config)
Then I can get the mayavi image and its screenshot correctly
Thanks a lot for your help!!! I’m getting desperate!
Issue Analytics
- State:
- Created 3 years ago
- Comments:6 (5 by maintainers)
Top Results From Across the Web
Cannot install mayavi/vtk with pip3 install due "Failed building ...
When I try to install mayavi normally with pip3 install mayavi. it gives the error. ERRROR: Failed building wheel for mayavi.
Read more >Quickstart | Habitat Lab Docs
Habitat Lab : A modular high-level library for end-to-end development in embodied AI — defining embodied AI tasks (e.g. navigation, instruction following, ...
Read more >habitat-lab - bytemeta
VTK/GLEW Error when use both habitat-lab and Mayavi ... Make software development more efficient, Also welcome to join our telegram.
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
We’d need to add something to habitat to allow it to piggy back off Mayavi’s context to keep both in the same process (assuming mayavi is written correctly, of course). You can work around this by using
habitat.VectorEnv
(https://github.com/facebookresearch/habitat-lab/blob/master/habitat/core/vector_env.py#L78) with 1 env as that’ll run the habitat instance in a separate processSorry for replying late, I finally use the plot3d function instead of mayavi. The solution you provided looks valuable for getting the property of one of the Env class in a VectorEnv thread. Thanks a lot and let’s close this issue!