question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

example model (resnet50_coco_best_v1.2.2.h5) failed to load, while v1.2.1.h5 works.

See original GitHub issue

I followed the “example/ResNet50RetinaNet - COCO 2017” notebook and found the latest model failed to load, while the previous version works fine.

Error is TypeError: Fetch argument None has invalid type <class 'NoneType'>

Environment:

Keras 2.1.2 py 3.6 TF: 1.4

=====

Complete stack trace:

C:\ProgramData\Anaconda3\lib\site-packages\keras-2.1.2-py3.6.egg\keras\models.py:271: UserWarning: Output "non_maximum_suppression_2" missing from loss dictionary. We assume this was done on purpose, and we will not be expecting any data to be passed to "non_maximum_suppression_2" during training.
  sample_weight_mode=sample_weight_mode)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-6-b8566c0d85ae> in <module>()
----> 1 model = keras.models.load_model('snapshots/resnet50_coco_best_v1.2.2.h5', custom_objects=custom_objects)
      2 #print(model.summary())

C:\ProgramData\Anaconda3\lib\site-packages\keras-2.1.2-py3.6.egg\keras\models.py in load_model(filepath, custom_objects, compile)
    284                                        optimizer_weight_names]
    285             try:
--> 286                 model.optimizer.set_weights(optimizer_weight_values)
    287             except ValueError:
    288                 warnings.warn('Error in loading the saved optimizer '

C:\ProgramData\Anaconda3\lib\site-packages\keras-2.1.2-py3.6.egg\keras\optimizers.py in set_weights(self, weights)
     97         params = self.weights
     98         weight_value_tuples = []
---> 99         param_values = K.batch_get_value(params)
    100         for pv, p, w in zip(param_values, params, weights):
    101             if pv.shape != w.shape:

C:\ProgramData\Anaconda3\lib\site-packages\keras-2.1.2-py3.6.egg\keras\backend\tensorflow_backend.py in batch_get_value(ops)
   2208     """
   2209     if ops:
-> 2210         return get_session().run(ops)
   2211     else:
   2212         return []

C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
    887     try:
    888       result = self._run(None, fetches, feed_dict, options_ptr,
--> 889                          run_metadata_ptr)
    890       if run_metadata:
    891         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
   1103     # Create a fetch handler to take care of the structure of fetches.
   1104     fetch_handler = _FetchHandler(
-> 1105         self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles)
   1106 
   1107     # Run request and get response.

C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in __init__(self, graph, fetches, feeds, feed_handles)
    412     """
    413     with graph.as_default():
--> 414       self._fetch_mapper = _FetchMapper.for_fetch(fetches)
    415     self._fetches = []
    416     self._targets = []

C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in for_fetch(fetch)
    232     elif isinstance(fetch, (list, tuple)):
    233       # NOTE(touts): This is also the code path for namedtuples.
--> 234       return _ListFetchMapper(fetch)
    235     elif isinstance(fetch, dict):
    236       return _DictFetchMapper(fetch)

C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in __init__(self, fetches)
    339     """
    340     self._fetch_type = type(fetches)
--> 341     self._mappers = [_FetchMapper.for_fetch(fetch) for fetch in fetches]
    342     self._unique_fetches, self._value_indices = _uniquify_fetches(self._mappers)
    343 

C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in <listcomp>(.0)
    339     """
    340     self._fetch_type = type(fetches)
--> 341     self._mappers = [_FetchMapper.for_fetch(fetch) for fetch in fetches]
    342     self._unique_fetches, self._value_indices = _uniquify_fetches(self._mappers)
    343 

C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in for_fetch(fetch)
    229     if fetch is None:
    230       raise TypeError('Fetch argument %r has invalid type %r' %
--> 231                       (fetch, type(fetch)))
    232     elif isinstance(fetch, (list, tuple)):
    233       # NOTE(touts): This is also the code path for namedtuples.

TypeError: Fetch argument None has invalid type <class 'NoneType'>

Issue Analytics

  • State:closed
  • Created 6 years ago
  • Comments:12 (7 by maintainers)

github_iconTop GitHub Comments

1reaction
hgaisercommented, Jan 4, 2018

You need to train your own model and use that, or download the pretrained model from the README. Then adjust the example code to point to that model and you should be good to go.

0reactions
hgaisercommented, Jan 15, 2018

Closing this due to inactivity of OP.

Read more comments on GitHub >

github_iconTop Results From Across the Web

Unable to load model from .h5 file · Issue #6937 - GitHub
Unable to load model Using TensorFlow backend. ... Can anyone guide me regarding above issue while loading the .h5 model.
Read more >
Load error when loading h5 saved by simple dense model
I used following code 1 to train and save model and code #2 to load but loading results in error. Any idea? Thanks.,...
Read more >
I can't load my trained h5 model with load.models(), how do I ...
Yes, there is a conflict between tf.keras and keras packages, you trained the model using tf.keras but then you are loading it with...
Read more >
Loading Keras model-best.h5 saved with W&B run
Hi, While using wandb.keras.WandbCallback() I noticed that W&B saves a “model-best.h5” file at every run. However, I run into errors while ...
Read more >
fail to load h5 model - Google Groups
I have the error : ... model=load_model('feuilles_simples_composees.h5') ... when loading an h5 model file, the h5 file is existing. thank you. Best regards....
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found