singleagent_merge training fails
See original GitHub issueBug Description
When I train singleagent_merge, it fails
Bug Reproduce
python train.py singleagent_merge
Output Log
Traceback (most recent call last):
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/tune/trial_runner.py", line 498, in _process_trial
result = self.trial_executor.fetch_result(trial)
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/tune/ray_trial_executor.py", line 342, in fetch_result
result = ray.get(trial_future[0])
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/worker.py", line 2247, in get
raise value
ray.exceptions.RayTaskError: [36mray_PPO:train()[39m (pid=14406, host=intel-pc)
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/rllib/agents/trainer.py", line 369, in train
raise e
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/rllib/agents/trainer.py", line 358, in train
result = Trainable.train(self)
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/tune/trainable.py", line 171, in train
result = self._train()
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/rllib/agents/trainer_template.py", line 126, in _train
fetches = self.optimizer.step()
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/rllib/optimizers/multi_gpu_optimizer.py", line 140, in step
self.num_envs_per_worker, self.train_batch_size)
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/rllib/optimizers/rollout.py", line 29, in collect_samples
next_sample = ray_get_and_free(fut_sample)
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/rllib/utils/memory.py", line 33, in ray_get_and_free
result = ray.get(object_ids)
ray.exceptions.RayTaskError: [36mray_RolloutWorker:sample()[39m (pid=14402, host=intel-pc)
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/rllib/evaluation/rollout_worker.py", line 453, in sample
batches = [self.input_reader.next()]
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/rllib/evaluation/sampler.py", line 56, in next
batches = [self.get_data()]
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/rllib/evaluation/sampler.py", line 97, in get_data
item = next(self.rollout_provider)
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/rllib/evaluation/sampler.py", line 313, in _env_runner
soft_horizon)
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/rllib/evaluation/sampler.py", line 401, in _process_observations
policy_id).transform(raw_obs)
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/rllib/models/preprocessors.py", line 166, in transform
self.check_shape(observation)
File "/home/intel/anaconda3/envs/flow/lib/python3.6/site-packages/ray/rllib/models/preprocessors.py", line 61, in check_shape
self._obs_space, observation)
ValueError: ('Observation outside expected value range', Box(280,), array([ 0.00000000e+00, 4.48674389e-03, 4.69197036e-02, 3.16010523e-05,
0.00000000e+00, 0.00000000e+00, 4.69065457e-02, 3.10963661e-02,
1.88532636e-01, 4.23515771e-01, 3.42134161e-02, 7.35134037e-02,
7.60705448e-06, 6.90067447e-03, 3.24158843e-01, 3.17126994e-01,
3.64110069e-01, 4.02902781e-01, 0.00000000e+00, 1.76898596e-03,
8.69775084e-03, 7.68905950e-03, 0.00000000e+00, 5.08732856e-04,
8.40520125e-02, 3.60284041e-02, 0.00000000e+00, 3.99014638e-01,
1.32984023e-01, 0.00000000e+00, 2.96668282e-02, 1.89124059e-03,
0.00000000e+00, 0.00000000e+00, 1.41107882e-05, 6.18246402e-05,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 3.24483209e-01, 4.01030390e-01,
4.71162745e-02, 4.70089797e-04, 0.00000000e+00, 2.85571169e-02,
2.87845099e-03, 2.83716878e-02, 2.21626102e-02, 5.26387533e-02,
0.00000000e+00, 0.00000000e+00, 2.28072147e-02, 5.68610825e-02,
3.24224414e-02, 6.54499515e-01, 9.06251461e-03, 4.06600015e-02,
6.74082556e-01, 6.99267902e-01, 5.60383461e-01, 6.35572339e-01,
1.13066070e-01, 2.47346859e-01, 2.77777281e-03, 2.79191731e-02,
3.33666667e-03, 3.07541214e-02, 3.33666667e-03, 2.83906531e-02,
1.30654777e-02, 4.92858732e-02, 7.32800789e-03, 2.16665080e-01,
6.54230012e-01, 0.00000000e+00, 3.33666667e-03, 3.23191679e-02,
2.11124944e-03, 2.71117168e-02, 1.26715522e-02, 3.76772208e-02,
1.26702344e-02, 3.76706168e-02, 2.51939438e-03, 2.75197527e-02,
0.00000000e+00, 0.00000000e+00, 7.60635793e-02, 8.34823607e-01,
2.28675005e-02, 5.33942033e-02, 7.26996557e-03, 3.29478805e-02,
1.62790698e-01, 1.62790698e-01, 4.65116279e-02, 4.65116279e-02,
0.00000000e+00, 0.00000000e+00, 3.48837209e-01, 3.48837209e-01,
2.09302326e-01, 2.09302326e-01, 9.30232558e-02, 9.30232558e-02,
2.79069767e-01, 2.79069767e-01, 3.95348837e-01, 3.95348837e-01,
2.55813953e-01, 2.55813953e-01, 1.39534884e-01, 1.39534884e-01,
3.25581395e-01, 3.25581395e-01, 4.41860465e-01, 4.41860465e-01,
4.88372093e-01, 4.88372093e-01, 3.72093023e-01, 3.72093023e-01,
5.58139535e-01, 0.00000000e+00, 6.74418605e-01, 6.74418605e-01,
5.34883721e-01, 5.34883721e-01, 4.18604651e-01, 4.18604651e-01,
6.04651163e-01, 6.04651163e-01, 7.20930233e-01, 7.20930233e-01,
0.00000000e+00, 0.00000000e+00, 4.65116279e-01, 4.65116279e-01,
6.51162791e-01, 6.51162791e-01, 7.67441860e-01, 7.67441860e-01,
2.16666667e-01, 5.00000000e-02, 5.00000000e-02, 1.50000000e-01,
2.00000000e-01, 1.16666667e-01, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 1.50000000e-01, 6.66666667e-02,
3.33333333e-02, 1.16666667e-01, 2.00000000e-01, 3.66666667e-01,
3.16666667e-01, 3.83333333e-01, 3.83333333e-01, 4.00000000e-01,
5.00000000e-02, 1.00000000e-01, 3.33333333e-02, 5.00000000e-02,
5.00000000e-02, 5.00000000e-02, 0.00000000e+00, 0.00000000e+00,
8.33333333e-02, 4.66666667e-01, 0.00000000e+00, 1.66666667e-02,
1.00000000e-01, 2.50000000e-01, 1.48685178e-01, 3.35974811e-01,
3.96160249e-01, 1.47097783e-01, 1.35245582e-01, 8.15259013e-02,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
7.66484153e-02, 2.23485215e-01, 3.20642919e-01, 2.02716680e-01,
8.04653056e-02, 5.25515315e-02, 1.09691206e-01, 1.10236476e-01,
1.01870119e-01, 4.05163967e-02, 2.68243040e-01, 1.20740103e-01,
3.62756800e-01, 4.28571429e-01, 1.12093114e-01, 4.19048617e-01,
0.00000000e+00, 0.00000000e+00, 7.41196468e-02, 7.77994982e-02,
0.00000000e+00, 1.32984023e-01, 7.19981731e-02, 6.87010532e-02,
3.00000000e+00, 2.00000000e+00, 1.00000000e+00, 0.00000000e+00,
2.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00,
0.00000000e+00, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00,
0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00,
1.00000000e+00, 1.00000000e+00, 1.16638555e-01, 8.83361445e-01,
1.00000000e+00, -2.55643238e-02, 8.07981492e-04, 1.32984023e-01,
8.67015977e-01, 1.00000000e+00, 1.32984023e-01, 1.00000000e+00,
1.12093114e-01, 8.87906886e-01, 1.00000000e+00, 5.97181930e-02,
7.93713410e-04, 7.59772096e-02, 9.24022790e-01, 1.00000000e+00,
-6.09564253e-03, 6.22668978e-04, -2.86000000e+01, 2.96000000e+01,
1.00000000e+00, -2.86000000e+01, 1.00000000e+00, 7.60705448e-06,
9.99992393e-01, 1.00000000e+00, -6.89306742e-03, 2.95404526e-04,
3.24158843e-01, 6.75841157e-01, 1.00000000e+00, 7.03184952e-03,
2.02939054e-03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]))
Issue Analytics
- State:
- Created 3 years ago
- Comments:5
Top Results From Across the Web
5 Employee Training Fails and How to Avoid Them - WalkMe
1. Taking the old-school approach · 2. Failing to take different learning styles into account · 3. Lack of incentives · 4. Not...
Read more >ULTIMATE US MILITARY TRAINING FAILS AND ... - YouTube
Here is a compilation of some of the most hilarious videos of the US military training fails and funny moments. Comment, like, share...
Read more >Is Failure the Right Training Strategy? - Army University Press
Brigade warfighter exercises are conditions-based training ... But, what if the training consisted only of failure with no ultimate success ...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Hi, I got this problem too. For solving it, I just set the upper and lower bound of the box to (1000,-1000) instead of (0,1), and then the simulation works. You can have a try.
hello,I try this way,but the error above still exists, especially when I set the horizon to a high value(e.g. 1000). So I am very confused