Model performance on KTH 10->20 task
See original GitHub issueHello, thank you for the paper and releasing the code. I’m having difficulty reproducing the results for the KTH Action task in section 4.2. I’ve downloaded the pre-trained weights for KTH Actions (200,000 ckpt) and used it to test the model.
System Info python 2.7 opencv 4.1.0.25 tensorflow-gpu 1.9.0 CUDA 9.0 GPU: name: TITAN X (Pascal) major: 6 minor: 1 memoryClockRate(GHz): 1.531 pciBusID: 0000:03:00.0 totalMemory: 11.91GiB freeMemory: 11.75GiB
script
#!/usr/bin/env bash cd .. python -u run.py \ --is_training False \ --dataset_name action \ --train_data_paths data/kth \ --valid_data_paths data/kth \ --pretrained_model kth_e3d_lstm_pretrain/model.ckpt-200000 \ --save_dir checkpoints/_kth_e3d_lstm \ --gen_frm_dir results/_kth_e3d_lstm \ --model_name e3d_lstm \ --allow_gpu_growth True \ --img_channel 1 \ --img_width 128 \ --input_length 10 \ --total_length 30 \ --filter_size 5 \ --num_hidden 64,64,64,64 \ --patch_size 8 \ --layer_norm True \ --reverse_input False \ --sampling_stop_iter 100000 \ --sampling_start_value 1.0 \ --sampling_delta_per_iter 0.00001 \ --lr 0.001 \ --batch_size 2 \ --max_iterations 1 \ --display_interval 1 \ --test_interval 1 \ --snapshot_interval 5000
output
(e3d_lstm_official) kstan@yixing:~/e3d_lstm/scripts$ ./e3d_lstm_kth_test.sh
Initializing models
2019-05-15 14:37:16.852811: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2019-05-15 14:37:19.055412: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1392] Found device 0 with properties:
name: TITAN X (Pascal) major: 6 minor: 1 memoryClockRate(GHz): 1.531
pciBusID: 0000:03:00.0
totalMemory: 11.91GiB freeMemory: 11.75GiB
2019-05-15 14:37:19.055439: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1471] Adding visible gpu devices: 0
2019-05-15 14:37:19.262277: I tensorflow/core/common_runtime/gpu/gpu_device.cc:952] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-05-15 14:37:19.262310: I tensorflow/core/common_runtime/gpu/gpu_device.cc:958] 0
2019-05-15 14:37:19.262318: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0: N
2019-05-15 14:37:19.262531: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1084] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 11376 MB memory) -> physical GPU (device: 0, name: TITAN X (Pascal), pci bus id: 0000:03:00.0, compute capability: 6.1)
load model: kth_e3d_lstm_pretrain/model.ckpt-200000
begin load datadata/kth
there are 127271 pictures
there are 5200 sequences
begin load datadata/kth
there are 74833 pictures
there are 3167 sequences
2019-05-15 14:39:52 itr: 1
training loss: 16082.05078125
2019-05-15 14:39:52 test…
mse per seq: 1853.1817014023088
96.02373807308271
80.29797137965903
84.68072711946989
83.75463825016179
84.48666421838448
84.61139482557209
85.35639578890967
86.27750272624341
87.66025201745674
89.2119170410002
90.84818150224523
92.64167446828084
94.38503250199183
96.13222195449993
98.02904253614453
99.92525694480216
101.83609684253146
103.8342688265889
105.73710226033657
107.45162212494725
psnr per frame: 23.111416
23.2865
23.752821
23.5958
23.57663
23.51337
23.477915
23.422129
23.364187
23.28756
23.209711
23.131495
23.047438
22.969624
22.893667
22.811342
22.732689
22.653484
22.571104
22.496899
22.43397
ssim per frame: 0.6098243
0.63740635
0.62530535
0.6226238
0.61893517
0.6169444
0.6149846
0.61348057
0.61197215
0.61037815
0.60889727
0.60745543
0.6060252
0.6047545
0.60347193
0.6020237
0.6007725
0.59954363
0.59822935
0.5971006
0.59618074
visual results gt11: gt12: gt13: gt14: gt15:
pd11: pd12: pd13: pd14: pd15:
…
It seems like the results are very different than what’s presented in the paper – what might I be doing wrong here?
Note: I’ve successfully reproduced the results and achieved the same SSIM and MSE on moving mnist task in section 4.1, so I don’t think it’s a system/hardware issue. So I think it could be possible that there is a mistake in the downloaded pretrained KTH action model.
Best, Kevin
Issue Analytics
- State:
- Created 4 years ago
- Comments:12
Top GitHub Comments
It’s been a month, there is no progress.
Maybe I find the reason, in rnn_cell.py, when calculating the output_gate, new_ global_ memory should be returned, but the code returns global memory,which is not updated, but even if I return new_ global_ memory, the result is even worse, so I suspect there is a problem in the transmission of time information