`df.my_column.plot(datashade=True)` gives strange graphs when my_column dtype=uint32
See original GitHub issueALL software version info
Ubuntu 20.04
name: puma-lab
channels:
- pyviz
- conda-forge
- defaults
dependencies:
- _libgcc_mutex=0.1=conda_forge
- _openmp_mutex=4.5=1_gnu
- abseil-cpp=20210324.2=h9c3ff4c_0
- alembic=1.7.3=pyhd8ed1ab_0
- alsa-lib=1.2.3=h516909a_0
- anyio=3.3.0=py37h89c1867_0
- argcomplete=1.12.3=pyhd8ed1ab_2
- argon2-cffi=20.1.0=py37h5e8e339_2
- arrow-cpp=5.0.0=py37hdf48254_5_cpu
- async_generator=1.10=py_0
- attrs=21.2.0=pyhd8ed1ab_0
- autopage=0.4.0=pyhd8ed1ab_0
- aws-c-cal=0.5.11=h95a6274_0
- aws-c-common=0.6.2=h7f98852_0
- aws-c-event-stream=0.2.7=h3541f99_13
- aws-c-io=0.10.5=hfb6a706_0
- aws-checksums=0.1.11=ha31a3da_7
- aws-sdk-cpp=1.8.186=hb4091e7_3
- babel=2.9.1=pyh44b312d_0
- backcall=0.2.0=pyh9f0ad1d_0
- backports=1.0=py_2
- backports.functools_lru_cache=1.6.4=pyhd8ed1ab_0
- backports.zoneinfo=0.2.1=py37h5e8e339_4
- bleach=4.1.0=pyhd8ed1ab_0
- bokeh=2.3.3=py37h89c1867_0
- brotlipy=0.7.0=py37h5e8e339_1001
- bzip2=1.0.8=h7f98852_4
- c-ares=1.17.2=h7f98852_0
- ca-certificates=2021.10.8=ha878542_0
- certifi=2021.10.8=py37h89c1867_0
- cffi=1.14.6=py37hc58025e_0
- chardet=4.0.0=py37h89c1867_1
- charset-normalizer=2.0.0=pyhd8ed1ab_0
- click=8.0.1=py37h89c1867_0
- clickhouse-cityhash=1.0.2.3=py37h3340039_2
- clickhouse-driver=0.2.1=py37h5e8e339_0
- cliff=3.9.0=pyhd8ed1ab_0
- cloudpickle=2.0.0=pyhd8ed1ab_0
- cmaes=0.8.2=pyh44b312d_0
- cmd2=2.2.0=py37h89c1867_0
- colorama=0.4.4=pyh9f0ad1d_0
- colorcet=2.0.6=pyhd8ed1ab_0
- colorlog=6.4.1=py37h89c1867_0
- conda=4.10.3=py37h89c1867_1
- conda-package-handling=1.7.3=py37h5e8e339_0
- cramjam=2.3.1=py37h5e8e339_1
- cryptography=3.4.7=py37h5d9358c_0
- cycler=0.10.0=py_2
- cytoolz=0.11.0=py37h5e8e339_3
- dask=2021.9.0=pyhd8ed1ab_0
- dask-core=2021.9.0=pyhd8ed1ab_0
- datashader=0.13.0=pyh6c4a22f_0
- datashape=0.5.4=py_1
- dbus=1.13.6=h48d8840_2
- debugpy=1.4.1=py37hcd2ae1e_0
- decorator=5.1.0=pyhd8ed1ab_0
- defusedxml=0.7.1=pyhd8ed1ab_0
- distributed=2021.9.0=py37h89c1867_0
- entrypoints=0.3=py37hc8dfbb8_1002
- expat=2.4.1=h9c3ff4c_0
- fastparquet=0.7.1=py37hb1e94ed_0
- filelock=3.0.12=pyh9f0ad1d_0
- fontconfig=2.13.1=hba837de_1005
- freetype=2.10.4=h0708190_1
- fsspec=2021.8.1=pyhd8ed1ab_0
- gettext=0.19.8.1=h0b5b191_1005
- gflags=2.2.2=he1b5a44_1004
- gitdb=4.0.7=pyhd8ed1ab_0
- gitpython=3.1.23=pyhd8ed1ab_1
- glib=2.68.4=h9c3ff4c_0
- glib-tools=2.68.4=h9c3ff4c_0
- glog=0.5.0=h48cff8f_0
- greenlet=1.1.1=py37hcd2ae1e_0
- grpc-cpp=1.40.0=h850795e_0
- gst-plugins-base=1.18.5=hf529b03_0
- gstreamer=1.18.5=h76c114f_0
- heapdict=1.0.1=py_0
- holoviews=1.14.5=py_0
- hvplot=0.7.3=py_0
- icu=68.1=h58526e2_0
- idna=3.1=pyhd3deb0d_0
- importlib-metadata=4.8.1=py37h89c1867_0
- importlib_metadata=4.8.1=hd8ed1ab_0
- importlib_resources=5.2.2=pyhd8ed1ab_0
- ipykernel=6.4.1=py37h6531663_0
- ipympl=0.7.0=pyhd8ed1ab_0
- ipython=7.27.0=py37h6531663_0
- ipython_genutils=0.2.0=py_1
- ipywidgets=7.6.5=pyhd8ed1ab_0
- jbig=2.1=h7f98852_2003
- jedi=0.18.0=py37h89c1867_2
- jinja2=3.0.1=pyhd8ed1ab_0
- joblib=1.0.1=pyhd8ed1ab_0
- jpeg=9d=h36c2ea0_0
- json5=0.9.5=pyh9f0ad1d_0
- jsonschema=3.2.0=py37hc8dfbb8_1
- jupyter-server-mathjax=0.2.3=pyhd8ed1ab_0
- jupyter_client=7.0.2=pyhd8ed1ab_0
- jupyter_contrib_core=0.3.3=py_2
- jupyter_contrib_nbextensions=0.5.1=py37hc8dfbb8_1
- jupyter_core=4.7.1=py37h89c1867_0
- jupyter_highlight_selected_word=0.2.0=py37h89c1867_1002
- jupyter_latex_envs=1.4.6=py37h89c1867_1001
- jupyter_nbextensions_configurator=0.4.1=py37h89c1867_2
- jupyter_server=1.11.0=pyhd8ed1ab_0
- jupyterlab=3.1.11=pyhd8ed1ab_0
- jupyterlab-git=0.32.2=pyhd8ed1ab_0
- jupyterlab_pygments=0.1.2=pyh9f0ad1d_0
- jupyterlab_server=2.8.1=pyhd8ed1ab_0
- jupyterlab_widgets=1.0.2=pyhd8ed1ab_0
- kiwisolver=1.3.2=py37h2527ec5_0
- krb5=1.19.2=hcc1bbae_0
- lcms2=2.12=hddcbb42_0
- ld_impl_linux-64=2.36.1=hea4e1c9_2
- lerc=2.2.1=h9c3ff4c_0
- libarchive=3.5.2=hccf745f_0
- libblas=3.9.0=11_linux64_openblas
- libbrotlicommon=1.0.9=h7f98852_5
- libbrotlidec=1.0.9=h7f98852_5
- libbrotlienc=1.0.9=h7f98852_5
- libcblas=3.9.0=11_linux64_openblas
- libclang=11.1.0=default_ha53f305_1
- libcurl=7.78.0=h2574ce0_0
- libdeflate=1.7=h7f98852_5
- libedit=3.1.20191231=he28a2e2_2
- libev=4.33=h516909a_1
- libevent=2.1.10=hcdb4288_3
- libffi=3.3=h58526e2_2
- libgcc-ng=11.1.0=hc902ee8_8
- libgfortran-ng=11.1.0=h69a702a_8
- libgfortran5=11.1.0=h6c583b3_8
- libglib=2.68.4=h3e27bee_0
- libgomp=11.1.0=hc902ee8_8
- libiconv=1.16=h516909a_0
- liblapack=3.9.0=11_linux64_openblas
- libllvm11=11.1.0=hf817b99_2
- libnghttp2=1.43.0=h812cca2_0
- libogg=1.3.4=h7f98852_1
- libopenblas=0.3.17=pthreads_h8fe5266_1
- libopus=1.3.1=h7f98852_1
- libpng=1.6.37=h21135ba_2
- libpq=13.3=hd57d9b9_0
- libprotobuf=3.16.0=h780b84a_0
- libsodium=1.0.18=h36c2ea0_1
- libsolv=0.7.19=h780b84a_5
- libssh2=1.10.0=ha56f1ee_0
- libstdcxx-ng=11.1.0=h56837e0_8
- libta-lib=0.4.0=h516909a_0
- libthrift=0.14.2=he6d91bd_1
- libtiff=4.3.0=hf544144_1
- libutf8proc=2.6.1=h7f98852_0
- libuuid=2.32.1=h7f98852_1000
- libuv=1.42.0=h7f98852_0
- libvorbis=1.3.7=h9c3ff4c_0
- libwebp-base=1.2.1=h7f98852_0
- libxcb=1.13=h7f98852_1003
- libxkbcommon=1.0.3=he3ba5ed_0
- libxml2=2.9.12=h72842e0_0
- libxslt=1.1.33=h15afd5d_2
- llvmlite=0.37.0=py37h9d7f4d0_0
- locket=0.2.0=py_2
- lxml=4.6.3=py37h77fd288_0
- lz4-c=1.9.3=h9c3ff4c_1
- lzo=2.10=h516909a_1000
- mako=1.1.5=pyhd8ed1ab_0
- mamba=0.15.3=py37h7f483ca_0
- markdown=3.3.4=pyhd8ed1ab_0
- markupsafe=2.0.1=py37h5e8e339_0
- matplotlib=3.4.3=py37h89c1867_0
- matplotlib-base=3.4.3=py37h1058ff1_0
- matplotlib-inline=0.1.3=pyhd8ed1ab_0
- mistune=0.8.4=py37h5e8e339_1004
- msgpack-python=1.0.2=py37h2527ec5_1
- multipledispatch=0.6.0=py_0
- mysql-common=8.0.25=ha770c72_2
- mysql-libs=8.0.25=hfa10184_2
- nb_conda_kernels=2.3.1=py37h89c1867_0
- nbclassic=0.3.1=pyhd8ed1ab_1
- nbclient=0.5.4=pyhd8ed1ab_0
- nbconvert=6.1.0=py37h89c1867_0
- nbdime=3.1.0=pyhd8ed1ab_0
- nbformat=5.1.3=pyhd8ed1ab_0
- ncurses=6.2=h58526e2_4
- nest-asyncio=1.5.1=pyhd8ed1ab_0
- notebook=6.4.3=pyha770c72_0
- nspr=4.30=h9c3ff4c_0
- nss=3.69=hb5efdd6_0
- numba=0.54.0=py37h2d894fd_0
- numpy=1.20.3=py37h038b26d_1
- olefile=0.46=pyh9f0ad1d_1
- openjpeg=2.4.0=hb52868f_1
- openssl=1.1.1l=h7f98852_0
- optuna=2.10.0=pyhd8ed1ab_0
- orc=1.6.10=h58a87f1_0
- packaging=21.0=pyhd8ed1ab_0
- pandas=1.3.2=py37he8f5f7f_0
- pandoc=2.14.2=h7f98852_0
- pandocfilters=1.4.2=py_1
- panel=0.12.1=py_0
- param=1.11.1=pyh6c4a22f_0
- parquet-cpp=1.5.1=1
- parso=0.8.2=pyhd8ed1ab_0
- partd=1.2.0=pyhd8ed1ab_0
- patsy=0.5.2=pyhd8ed1ab_0
- pbr=5.6.0=pyhd8ed1ab_0
- pcre=8.45=h9c3ff4c_0
- pexpect=4.8.0=py37hc8dfbb8_1
- pickle5=0.0.11=py37h5e8e339_0
- pickleshare=0.7.5=py37hc8dfbb8_1002
- pillow=8.3.2=py37h0f21c89_0
- pip=21.2.4=pyhd8ed1ab_0
- prettytable=2.2.0=pyhd8ed1ab_0
- prometheus_client=0.11.0=pyhd8ed1ab_0
- prompt-toolkit=3.0.20=pyha770c72_0
- psutil=5.8.0=py37h5e8e339_1
- pthread-stubs=0.4=h36c2ea0_1001
- ptyprocess=0.7.0=pyhd3deb0d_0
- pyarrow=5.0.0=py37h58331f5_5_cpu
- pycosat=0.6.3=py37h5e8e339_1006
- pycparser=2.20=pyh9f0ad1d_2
- pyct=0.4.6=py_0
- pyct-core=0.4.6=py_0
- pygments=2.10.0=pyhd8ed1ab_0
- pykalman=0.9.5=py_1
- pyopenssl=20.0.1=pyhd8ed1ab_0
- pyparsing=2.4.7=pyh9f0ad1d_0
- pyperclip=1.8.2=pyhd8ed1ab_2
- pyqt=5.12.3=py37h89c1867_7
- pyqt-impl=5.12.3=py37he336c9b_7
- pyqt5-sip=4.19.18=py37hcd2ae1e_7
- pyqtchart=5.12=py37he336c9b_7
- pyqtwebengine=5.12.1=py37he336c9b_7
- pyrsistent=0.17.3=py37h5e8e339_2
- pysocks=1.7.1=py37h89c1867_3
- python=3.7.10=hffdb5ce_100_cpython
- python-dateutil=2.8.2=pyhd8ed1ab_0
- python_abi=3.7=2_cp37m
- pytz=2021.1=pyhd8ed1ab_0
- pyviz_comms=2.1.0=py_0
- pyyaml=5.4.1=py37h5e8e339_1
- pyzmq=22.2.1=py37h336d617_0
- qt=5.12.9=hda022c4_4
- re2=2021.09.01=h9c3ff4c_0
- readline=8.1=h46c0cb4_0
- redis-py=3.5.3=pyh9f0ad1d_0
- reproc=14.2.3=h7f98852_0
- reproc-cpp=14.2.3=h9c3ff4c_0
- requests=2.26.0=pyhd8ed1ab_0
- requests-unixsocket=0.2.0=py_0
- ruamel_yaml=0.15.80=py37h5e8e339_1004
- s2n=1.0.10=h9b69904_0
- scikit-learn=0.24.2=py37hf0f1638_1
- send2trash=1.8.0=pyhd8ed1ab_0
- setproctitle=1.1.10=py37h5e8e339_1004
- setuptools=58.0.4=py37h89c1867_0
- six=1.16.0=pyh6c4a22f_0
- smmap=3.0.5=pyh44b312d_0
- snappy=1.1.8=he1b5a44_3
- sniffio=1.2.0=py37h89c1867_1
- sortedcontainers=2.4.0=pyhd8ed1ab_0
- sqlalchemy=1.4.25=py37h5e8e339_0
- sqlite=3.36.0=h9cd32fc_1
- statsmodels=0.12.2=py37hb1e94ed_0
- stevedore=3.4.0=py37h89c1867_0
- ta-lib=0.4.19=py37ha21ca33_2
- tabulate=0.8.9=pyhd8ed1ab_0
- tblib=1.7.0=pyhd8ed1ab_0
- tensorboardx=2.4=pyhd8ed1ab_0
- terminado=0.12.1=py37h89c1867_0
- testpath=0.5.0=pyhd8ed1ab_0
- threadpoolctl=2.2.0=pyh8a188c0_0
- thrift=0.13.0=py37hcd2ae1e_2
- tk=8.6.11=h27826a3_1
- toolz=0.11.1=py_0
- tornado=6.1=py37h5e8e339_1
- tqdm=4.62.2=pyhd8ed1ab_0
- traitlets=5.1.0=pyhd8ed1ab_0
- typing_extensions=3.10.0.0=pyha770c72_0
- tzdata=2021a=he74cb21_1
- tzlocal=3.0=py37h89c1867_2
- urllib3=1.26.6=pyhd8ed1ab_0
- wcwidth=0.2.5=pyh9f0ad1d_2
- webencodings=0.5.1=py_1
- websocket-client=0.57.0=py37h89c1867_4
- wheel=0.37.0=pyhd8ed1ab_1
- widgetsnbextension=3.5.1=py37h89c1867_4
- xarray=0.19.0=pyhd8ed1ab_1
- xeus=2.0.0=h7d0c39e_0
- xeus-python=0.13.0=py37h4b46df4_1
- xeus-python-shell=0.1.5=pyhd8ed1ab_0
- xorg-libxau=1.0.9=h7f98852_0
- xorg-libxdmcp=1.1.3=h7f98852_0
- xz=5.2.5=h516909a_1
- yaml=0.2.5=h516909a_0
- zeromq=4.3.4=h9c3ff4c_1
- zict=2.0.0=py_0
- zipp=3.5.0=pyhd8ed1ab_0
- zlib=1.2.11=h516909a_1010
- zstandard=0.15.2=py37h5e8e339_0
- zstd=1.5.0=ha95c52a_0
- pip:
- absl-py==0.13.0
- aiohttp==3.7.4.post0
- aiohttp-cors==0.7.0
- aioredis==1.3.1
- async-timeout==3.0.1
- autograd==1.3
- bayesian-optimization==1.2.0
- blessed==1.19.0
- blessings==1.7
- cachetools==4.2.2
- cma==2.7.0
- colorful==0.5.4
- cython==0.29.24
- future==0.18.2
- google-api-core==1.31.2
- google-auth==1.35.0
- google-auth-oauthlib==0.4.6
- googleapis-common-protos==1.53.0
- gpustat==0.6.0
- gpy==1.10.0
- gpytorch==1.5.1
- grpcio==1.40.0
- hebo==0.1.0
- hiredis==2.0.0
- multidict==5.1.0
- nevergrad==0.4.3.post8
- nvidia-ml-py3==7.352.0
- oauthlib==3.1.1
- opencensus==0.7.13
- opencensus-context==0.1.2
- paramz==0.9.5
- protobuf==3.17.3
- psycopg2==2.9.1
- py-spy==0.3.9
- pyasn1==0.4.8
- pyasn1-modules==0.2.8
- pydantic==1.8.2
- pymoo==0.4.2.2
- ray==1.7.1
- requests-oauthlib==1.3.0
- rsa==4.7.2
- scipy==1.5.4
- sklearn==0.0
- tensorboard==2.6.0
- tensorboard-data-server==0.6.1
- tensorboard-plugin-wit==1.8.0
- torch==1.9.1
- werkzeug==2.0.1
- yarl==1.6.3
Description of expected behavior and the observed behavior
Expected:
Got:
The original dtype is numpy.uint32
(which gives the second figure). To get the first figure I have to change type: my_df.my_col = my_df.my_col.astype(np.int32)
Complete, minimal, self-contained example code that reproduces the issue
The only thing I noticed is the difference in dtype
of data frame’s column. The original is dtype: uint32
. When type is changed to e.g. dtype: int32
, it works as expected. When trying to reproduce I get an empty figure instead of a half colored plot (see the picture above). So not sure what else the difference could be.
import numpy as np
# works as intended
test = pd.DataFrame([i for i in range(100)], columns=["my_column"])
test.plot(datashade=True)
# creates an empty figure
test.my_column = test.my_column.astype(np.uint32)
test.plot(datashade=True)
Stack traceback and/or browser JavaScript console output
Only a couple of warnings:
/home/toaster/PROGS/miniconda3/envs/puma-lab/lib/python3.7/site-packages/holoviews/operation/datashader.py:428: FutureWarning: casting datetime64[ns] values to int64 with .astype(...) is deprecated and will raise in a future version. Use .view(...) instead.
df[d.name] = vals.astype('int64')
/home/toaster/PROGS/miniconda3/envs/puma-lab/lib/python3.7/site-packages/holoviews/operation/datashader.py:428: FutureWarning: casting datetime64[ns] values to int64 with .astype(...) is deprecated and will raise in a future version. Use .view(...) instead.
df[d.name] = vals.astype('int64')
Issue Analytics
- State:
- Created 2 years ago
- Comments:6 (4 by maintainers)
Top Results From Across the Web
strange graph while plotting two columns of a DataFrame
The problem comes due to the fact that the elements in the x-axis are not sorted. Consider the following example:
Read more >Chart visualization — pandas 1.5.2 documentation - PyData |
We provide the basics in pandas to easily create decent looking plots. ... On DataFrame, plot() is a convenience to plot all of...
Read more >Understand df.plot in pandas - Jonathan Soma
Plotting Version 1: .plot plots the index against every column. Let's look at a slice somewhere in the middle of our data. It's...
Read more >Plot Histograms Using Pandas: hist() Example - Mode Analytics
Calling the dtypes attribute of a dataframe will return information about the data ... column: the specific column(s) you want to create a...
Read more >Plot With Pandas: Python Data Visualization for Beginners
You'll learn about the different kinds of plots that pandas offers, ... The next plots will give you a general overview of a...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Sorry if I wasn’t clear, the plot I showed was with my fix in it. See the PR above my comment.
Someone could investigate, but no one has volunteered yet, so it’s an open challenge. I am not sure it’s a datashader issue, and mostly the same people work on both projects, so here is as good a place as any. For now there is a workaround, but if you’d like to investigate, the first step would be to trace though and see if the data is converted to a new type before calling datashader. Wish I had more details than that, but that’s what needs investigating!