Longformer ort model raises `Non-zero status code returned while running Expand node. Name:'Expand_1657'` for sequence length longer than `attention_window``
See original GitHub issueSystem Info
optimum dev
transformers dev
python 3.9
Who can help?
Information
- The official example scripts
- My own modified scripts
Tasks
- An officially supported task in the
examples
folder (such as GLUE/SQuAD, …) - My own task or dataset (give details below)
Reproduction
from transformers import AutoTokenizer
import torch
import onnxruntime as ort
tokenizer = AutoTokenizer.from_pretrained("fxmarty/tiny-random-longformer")
session = ort.InferenceSession("/path/to/model.onnx", providers=["CPUExecutionProvider"])
seq_len = 520
batch_size = 1
input_ids = torch.randint(tokenizer.vocab_size, (batch_size, seq_len))
attention_mask = torch.ones((batch_size, seq_len), dtype=torch.int64)
onnx_inputs = {
"input_ids": input_ids.cpu().detach().numpy(),
"attention_mask": attention_mask.cpu().detach().numpy(),
}
res = session.run(None, onnx_inputs)
Error:
File "/home/fxmarty/anaconda3/envs/hf-inf/lib/python3.9/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py", line 200, in run
return self._sess.run(output_names, input_feed, run_options)
onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Non-zero status code returned while running Expand node. Name:'Expand_1657' Status Message: invalid expand shape
Using a shorter sequence length ( < 512 = attention_window) there is no issue. The tokenizer.model_max_length
is 4096.
Note: I had to hack a bit https://github.com/huggingface/transformers/blob/94b3f544a1f5e04b78d87a2ae32a7ac252e22e31/src/transformers/models/longformer/configuration_longformer.py#L170 to remove global_attention_mask
as a required input, which is optional in transformers, in order to have it work with ORTModelForFeatureExtraction
.
There are a bunch of warnings during the conversion as well:
Some weights of the model checkpoint at allenai/longformer-base-4096 were not used when initializing LongformerModel: ['lm_head.dense.weight', 'lm_head.bias', 'lm_head.dense.bias', 'lm_head.decoder.weight', 'lm_head.layer_norm.bias', 'lm_head.layer_norm.weight']
- This IS expected if you are initializing LongformerModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing LongformerModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
/home/fxmarty/hf_internship/transformers/src/transformers/models/longformer/modeling_longformer.py:1615: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
if padding_len > 0:
/home/fxmarty/hf_internship/transformers/src/transformers/models/longformer/modeling_longformer.py:1297: TracerWarning: Converting a tensor to a Python number might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
is_global_attn = is_index_global_attn.flatten().any().item()
/home/fxmarty/hf_internship/transformers/src/transformers/models/longformer/modeling_longformer.py:565: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
assert (
/home/fxmarty/hf_internship/transformers/src/transformers/models/longformer/modeling_longformer.py:832: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
assert (
/home/fxmarty/hf_internship/transformers/src/transformers/models/longformer/modeling_longformer.py:835: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
assert query.size() == key.size()
/home/fxmarty/hf_internship/transformers/src/transformers/models/longformer/modeling_longformer.py:785: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
if hidden_states.size(1) == window_overlap * 2:
/home/fxmarty/hf_internship/transformers/src/transformers/models/longformer/modeling_longformer.py:594: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
assert list(attn_scores.size()) == [
/home/fxmarty/hf_internship/transformers/src/transformers/models/longformer/modeling_longformer.py:900: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
assert seq_len % (window_overlap * 2) == 0
/home/fxmarty/hf_internship/transformers/src/transformers/models/longformer/modeling_longformer.py:901: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
assert attn_probs.size()[:3] == value.size()[:3]
/home/fxmarty/hf_internship/transformers/src/transformers/models/longformer/modeling_longformer.py:902: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
assert attn_probs.size(3) == 2 * window_overlap + 1
/home/fxmarty/hf_internship/transformers/src/transformers/models/longformer/modeling_longformer.py:668: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
assert attn_output.size() == (batch_size, seq_len, self.num_heads, self.head_dim), "Unexpected size"
/home/fxmarty/hf_internship/transformers/src/transformers/models/longformer/modeling_longformer.py:1353: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
if padding_len > 0:
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
Expected behavior
no error
Issue Analytics
- State:
- Created 10 months ago
- Comments:8 (5 by maintainers)
Top Results From Across the Web
[ONNXRuntimeError] Non-zero status code returned while ...
Describe the bug I am trying to follow this tutorial to transfer my 2 layer bert into ONNX and optimize with onnxruntime_tools.
Read more >Longformer - Hugging Face
Transformer-based models are unable to process long sequences due to their self-attention operation, which scales quadratically with the sequence length.
Read more >Longformer: The Long-Document Transformer - arXiv
To address this limitation, we introduce the Longformer with an attention mechanism that scales linearly with sequence length, making it easy to ......
Read more >Longformer: The Long-Document Transformer - arXiv Vanity
Transformer-based models are unable to process long sequences due to their self-attention operation, which scales quadratically with the sequence length.
Read more >Understanding LongFormer's Sliding Window Attention ...
The model tries to overcome the issue of limited input sequence length in the ... Figure 4 shows an attention window of size...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Hey @deutschmn , just so to let you know, the issue was coming from elsewhere: https://github.com/huggingface/transformers/pull/20292
Lesson for myself from hours of debugging: read the warning messages from the onnx export, control flow is your biggest enemy 😃
That’s quite possible! I had to rewrite a couple of those indexing operations: https://github.com/huggingface/transformers/pull/17176/files#diff-86f24b1d38dd389a411fc51afa4be5310bd067abbd8b94dcd89f142402e694c8R1087 Apparently, I’ve missed this one.