question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

CamembertForSequenceClassification not initialized from pretrained model

See original GitHub issue

Model I am using CamembertForSequenceClassification for a relation classification task. I’m trying to adapt the model following the implementation proposed by wang for this paper When I try to load the pre trained model loading weights file https://s3.amazonaws.com/models.huggingface.co/bert/camembert-base-pytorch_model.bin to fine-tune it on my task, I get the following INFO message. I find it weird because it seems that a lot of model’s params are not initialized (contrary to what I see for BERT model) : 04/28/2020 00:56:31 - INFO - transformers.modeling_utils - Weights of CamembertForSequenceClassification not initialized from pretrained model: ['latent_type', 'classifier.weight', 'classifier.bias', 'bert.embeddings.word_embeddings.weight', 'bert.embeddings.position_embeddings.weight', 'bert.embeddings.token_type_embeddings.weight', 'bert.embeddings.LayerNorm.weight', 'bert.embeddings.LayerNorm.bias', 'bert.encoder.layer.0.attention.self.query.weight', 'bert.encoder.layer.0.attention.self.query.bias', 'bert.encoder.layer.0.attention.self.key.weight', 'bert.encoder.layer.0.attention.self.key.bias', 'bert.encoder.layer.0.attention.self.value.weight', 'bert.encoder.layer.0.attention.self.value.bias', 'bert.encoder.layer.0.attention.output.dense.weight', 'bert.encoder.layer.0.attention.output.dense.bias', 'bert.encoder.layer.0.attention.output.LayerNorm.weight', 'bert.encoder.layer.0.attention.output.LayerNorm.bias', 'bert.encoder.layer.0.intermediate.dense.weight', 'bert.encoder.layer.0.intermediate.dense.bias', 'bert.encoder.layer.0.output.dense.weight', 'bert.encoder.layer.0.output.dense.bias', 'bert.encoder.layer.0.output.LayerNorm.weight', 'bert.encoder.layer.0.output.LayerNorm.bias', 'bert.encoder.layer.1.attention.self.query.weight', 'bert.encoder.layer.1.attention.self.query.bias', 'bert.encoder.layer.1.attention.self.key.weight', 'bert.encoder.layer.1.attention.self.key.bias', 'bert.encoder.layer.1.attention.self.value.weight', 'bert.encoder.layer.1.attention.self.value.bias', 'bert.encoder.layer.1.attention.output.dense.weight', 'bert.encoder.layer.1.attention.output.dense.bias', 'bert.encoder.layer.1.attention.output.LayerNorm.weight', 'bert.encoder.layer.1.attention.output.LayerNorm.bias', 'bert.encoder.layer.1.intermediate.dense.weight', 'bert.encoder.layer.1.intermediate.dense.bias', 'bert.encoder.layer.1.output.dense.weight', 'bert.encoder.layer.1.output.dense.bias', 'bert.encoder.layer.1.output.LayerNorm.weight', 'bert.encoder.layer.1.output.LayerNorm.bias', 'bert.encoder.layer.2.attention.self.query.weight', 'bert.encoder.layer.2.attention.self.query.bias', 'bert.encoder.layer.2.attention.self.key.weight', 'bert.encoder.layer.2.attention.self.key.bias', 'bert.encoder.layer.2.attention.self.value.weight', 'bert.encoder.layer.2.attention.self.value.bias', 'bert.encoder.layer.2.attention.output.dense.weight', 'bert.encoder.layer.2.attention.output.dense.bias', 'bert.encoder.layer.2.attention.output.LayerNorm.weight', 'bert.encoder.layer.2.attention.output.LayerNorm.bias', 'bert.encoder.layer.2.intermediate.dense.weight', 'bert.encoder.layer.2.intermediate.dense.bias', 'bert.encoder.layer.2.output.dense.weight', 'bert.encoder.layer.2.output.dense.bias', 'bert.encoder.layer.2.output.LayerNorm.weight', 'bert.encoder.layer.2.output.LayerNorm.bias', 'bert.encoder.layer.3.attention.self.query.weight', 'bert.encoder.layer.3.attention.self.query.bias', 'bert.encoder.layer.3.attention.self.key.weight', 'bert.encoder.layer.3.attention.self.key.bias', 'bert.encoder.layer.3.attention.self.value.weight', 'bert.encoder.layer.3.attention.self.value.bias', 'bert.encoder.layer.3.attention.output.dense.weight', 'bert.encoder.layer.3.attention.output.dense.bias', 'bert.encoder.layer.3.attention.output.LayerNorm.weight', 'bert.encoder.layer.3.attention.output.LayerNorm.bias', 'bert.encoder.layer.3.intermediate.dense.weight', 'bert.encoder.layer.3.intermediate.dense.bias', 'bert.encoder.layer.3.output.dense.weight', 'bert.encoder.layer.3.output.dense.bias', 'bert.encoder.layer.3.output.LayerNorm.weight', 'bert.encoder.layer.3.output.LayerNorm.bias', 'bert.encoder.layer.4.attention.self.query.weight', 'bert.encoder.layer.4.attention.self.query.bias', 'bert.encoder.layer.4.attention.self.key.weight', 'bert.encoder.layer.4.attention.self.key.bias', 'bert.encoder.layer.4.attention.self.value.weight', 'bert.encoder.layer.4.attention.self.value.bias', 'bert.encoder.layer.4.attention.output.dense.weight', 'bert.encoder.layer.4.attention.output.dense.bias', 'bert.encoder.layer.4.attention.output.LayerNorm.weight', 'bert.encoder.layer.4.attention.output.LayerNorm.bias', 'bert.encoder.layer.4.intermediate.dense.weight', 'bert.encoder.layer.4.intermediate.dense.bias', 'bert.encoder.layer.4.output.dense.weight', 'bert.encoder.layer.4.output.dense.bias', 'bert.encoder.layer.4.output.LayerNorm.weight', 'bert.encoder.layer.4.output.LayerNorm.bias', 'bert.encoder.layer.5.attention.self.query.weight', 'bert.encoder.layer.5.attention.self.query.bias', 'bert.encoder.layer.5.attention.self.key.weight', 'bert.encoder.layer.5.attention.self.key.bias', 'bert.encoder.layer.5.attention.self.value.weight', 'bert.encoder.layer.5.attention.self.value.bias', 'bert.encoder.layer.5.attention.output.dense.weight', 'bert.encoder.layer.5.attention.output.dense.bias', 'bert.encoder.layer.5.attention.output.LayerNorm.weight', 'bert.encoder.layer.5.attention.output.LayerNorm.bias', 'bert.encoder.layer.5.intermediate.dense.weight', 'bert.encoder.layer.5.intermediate.dense.bias', 'bert.encoder.layer.5.output.dense.weight', 'bert.encoder.layer.5.output.dense.bias', 'bert.encoder.layer.5.output.LayerNorm.weight', 'bert.encoder.layer.5.output.LayerNorm.bias', 'bert.encoder.layer.6.attention.self.query.weight', 'bert.encoder.layer.6.attention.self.query.bias', 'bert.encoder.layer.6.attention.self.key.weight', 'bert.encoder.layer.6.attention.self.key.bias', 'bert.encoder.layer.6.attention.self.value.weight', 'bert.encoder.layer.6.attention.self.value.bias', 'bert.encoder.layer.6.attention.output.dense.weight', 'bert.encoder.layer.6.attention.output.dense.bias', 'bert.encoder.layer.6.attention.output.LayerNorm.weight', 'bert.encoder.layer.6.attention.output.LayerNorm.bias', 'bert.encoder.layer.6.intermediate.dense.weight', 'bert.encoder.layer.6.intermediate.dense.bias', 'bert.encoder.layer.6.output.dense.weight', 'bert.encoder.layer.6.output.dense.bias', 'bert.encoder.layer.6.output.LayerNorm.weight', 'bert.encoder.layer.6.output.LayerNorm.bias', 'bert.encoder.layer.7.attention.self.query.weight', 'bert.encoder.layer.7.attention.self.query.bias', 'bert.encoder.layer.7.attention.self.key.weight', 'bert.encoder.layer.7.attention.self.key.bias', 'bert.encoder.layer.7.attention.self.value.weight', 'bert.encoder.layer.7.attention.self.value.bias', 'bert.encoder.layer.7.attention.output.dense.weight', 'bert.encoder.layer.7.attention.output.dense.bias', 'bert.encoder.layer.7.attention.output.LayerNorm.weight', 'bert.encoder.layer.7.attention.output.LayerNorm.bias', 'bert.encoder.layer.7.intermediate.dense.weight', 'bert.encoder.layer.7.intermediate.dense.bias', 'bert.encoder.layer.7.output.dense.weight', 'bert.encoder.layer.7.output.dense.bias', 'bert.encoder.layer.7.output.LayerNorm.weight', 'bert.encoder.layer.7.output.LayerNorm.bias', 'bert.encoder.layer.8.attention.self.query.weight', 'bert.encoder.layer.8.attention.self.query.bias', 'bert.encoder.layer.8.attention.self.key.weight', 'bert.encoder.layer.8.attention.self.key.bias', 'bert.encoder.layer.8.attention.self.value.weight', 'bert.encoder.layer.8.attention.self.value.bias', 'bert.encoder.layer.8.attention.output.dense.weight', 'bert.encoder.layer.8.attention.output.dense.bias', 'bert.encoder.layer.8.attention.output.LayerNorm.weight', 'bert.encoder.layer.8.attention.output.LayerNorm.bias', 'bert.encoder.layer.8.intermediate.dense.weight', 'bert.encoder.layer.8.intermediate.dense.bias', 'bert.encoder.layer.8.output.dense.weight', 'bert.encoder.layer.8.output.dense.bias', 'bert.encoder.layer.8.output.LayerNorm.weight', 'bert.encoder.layer.8.output.LayerNorm.bias', 'bert.encoder.layer.9.attention.self.query.weight', 'bert.encoder.layer.9.attention.self.query.bias', 'bert.encoder.layer.9.attention.self.key.weight', 'bert.encoder.layer.9.attention.self.key.bias', 'bert.encoder.layer.9.attention.self.value.weight', 'bert.encoder.layer.9.attention.self.value.bias', 'bert.encoder.layer.9.attention.output.dense.weight', 'bert.encoder.layer.9.attention.output.dense.bias', 'bert.encoder.layer.9.attention.output.LayerNorm.weight', 'bert.encoder.layer.9.attention.output.LayerNorm.bias', 'bert.encoder.layer.9.intermediate.dense.weight', 'bert.encoder.layer.9.intermediate.dense.bias', 'bert.encoder.layer.9.output.dense.weight', 'bert.encoder.layer.9.output.dense.bias', 'bert.encoder.layer.9.output.LayerNorm.weight', 'bert.encoder.layer.9.output.LayerNorm.bias', 'bert.encoder.layer.10.attention.self.query.weight', 'bert.encoder.layer.10.attention.self.query.bias', 'bert.encoder.layer.10.attention.self.key.weight', 'bert.encoder.layer.10.attention.self.key.bias', 'bert.encoder.layer.10.attention.self.value.weight', 'bert.encoder.layer.10.attention.self.value.bias', 'bert.encoder.layer.10.attention.output.dense.weight', 'bert.encoder.layer.10.attention.output.dense.bias', 'bert.encoder.layer.10.attention.output.LayerNorm.weight', 'bert.encoder.layer.10.attention.output.LayerNorm.bias', 'bert.encoder.layer.10.intermediate.dense.weight', 'bert.encoder.layer.10.intermediate.dense.bias', 'bert.encoder.layer.10.output.dense.weight', 'bert.encoder.layer.10.output.dense.bias', 'bert.encoder.layer.10.output.LayerNorm.weight', 'bert.encoder.layer.10.output.LayerNorm.bias', 'bert.encoder.layer.11.attention.self.query.weight', 'bert.encoder.layer.11.attention.self.query.bias', 'bert.encoder.layer.11.attention.self.key.weight', 'bert.encoder.layer.11.attention.self.key.bias', 'bert.encoder.layer.11.attention.self.value.weight', 'bert.encoder.layer.11.attention.self.value.bias', 'bert.encoder.layer.11.attention.output.dense.weight', 'bert.encoder.layer.11.attention.output.dense.bias', 'bert.encoder.layer.11.attention.output.LayerNorm.weight', 'bert.encoder.layer.11.attention.output.LayerNorm.bias', 'bert.encoder.layer.11.intermediate.dense.weight', 'bert.encoder.layer.11.intermediate.dense.bias', 'bert.encoder.layer.11.output.dense.weight', 'bert.encoder.layer.11.output.dense.bias', 'bert.encoder.layer.11.output.LayerN

Any thoughts about that ? Thanks in advance

Issue Analytics

  • State:closed
  • Created 3 years ago
  • Comments:5 (2 by maintainers)

github_iconTop GitHub Comments

1reaction
LysandreJikcommented, May 1, 2020

That’s because your CamembertForSequenceClassification does not conform to our model, regarding naming.

CamembertForSequenceClassification inherits from RobertaForSequenceClassification and therefore the transformer model should be named self.roberta, and not self.bert.

0reactions
stale[bot]commented, Jul 1, 2020

This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions.

Read more comments on GitHub >

github_iconTop Results From Across the Web

Weights of pre-trained BERT model not initialized - Transformers
I am using the Language Interpretability Toolkit (LIT) to load and analyze the 'bert-base-german-cased' model that I pre-trained on an NER ...
Read more >
CamemBERT for French Tweets classification | Kaggle
Some weights of CamembertForSequenceClassification were not initialized from the model checkpoint at camembert-base and are newly initialized: ...
Read more >
Weights of pre-trained BERT model not initialized
This will issue a warning about some of the pretrained weights not being used and some weights being randomly initialized.
Read more >
How much does pre-trained information help? Partially re ...
Another interesting thing to note is that for 1% of the training examples (around 670 examples), the accuracy of a model with no...
Read more >
Models and pre-trained weights — Torchvision main ... - PyTorch
Instancing a pre-trained model will download its weights to a cache directory. ... No weights - random initialization resnet50(weights=None).
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found