generic text classification with TensorFlow error (AttributeError: 'TFTrainingArguments' object has no attribute 'args')
See original GitHub issueEnvironment info
transformers
version: 3.2.0- Platform: Linux-4.15.0-1091-oem-x86_64-with-Ubuntu-18.04-bionic
- Python version: 3.6.9
- PyTorch version (GPU?): not installed (NA)
- Tensorflow version (GPU?): 2.3.0 (True)
- Using GPU in script?: <fill in>
- Using distributed or parallel set-up in script?: <fill in>
Who can help
Information
Model I am using (Bert, XLNet …): bert-base-multilingual-uncased
The problem arises when using:
- the official example scripts: (give details below)
- my own modified scripts: (give details below) Running run_tf_text_classification.py with flags from the example in the “Run generic text classification script in TensorFlow” section of examples/text-classification
The tasks I am working on is:
- an official GLUE/SQUaD task: (give the name)
- my own task or dataset: (give details below) Text classification dataset for classifying answers to questions. Using 3 CSVs (train, dev, and test) that each have headers (class, text) and columns containing class labels (int) and questions (strings). There are no commas present in the questions, for reference.
To reproduce
Steps to reproduce the behavior:
- Call run_tf_text_classification.py with flags from the example in the “Run generic text classification script in TensorFlow” section of examples/text-classification:
python run_tf_text_classification.py \
--train_file train.csv \
--dev_file dev.csv \
--test_file test.csv \
--label_column_id 0 \
--model_name_or_path bert-base-multilingual-uncased \
--output_dir model \
--num_train_epochs 4 \
--per_device_train_batch_size 16 \
--per_device_eval_batch_size 32 \
--do_train \
--do_eval \
--do_predict \
--logging_steps 10 \
--evaluate_during_training \
--save_steps 10 \
--overwrite_output_dir \
--max_seq_length 128
- Error is encountered:
Traceback (most recent call last):
File "run_tf_text_classification.py", line 283, in <module>
main()
File "run_tf_text_classification.py", line 199, in main
training_args.n_replicas,
File "/home/qd_team/qdmr_gpu/smart_env/lib/python3.6/site-packages/transformers/file_utils.py", line 936, in wrapper
return func(*args, **kwargs)
File "/home/qd_team/qdmr_gpu/smart_env/lib/python3.6/site-packages/transformers/training_args_tf.py", line 180, in n_replicas
return self._setup_strategy.num_replicas_in_sync
File "/home/qd_team/qdmr_gpu/smart_env/lib/python3.6/site-packages/transformers/file_utils.py", line 914, in __get__
cached = self.fget(obj)
File "/home/qd_team/qdmr_gpu/smart_env/lib/python3.6/site-packages/transformers/file_utils.py", line 936, in wrapper
return func(*args, **kwargs)
File "/home/qd_team/qdmr_gpu/smart_env/lib/python3.6/site-packages/transformers/training_args_tf.py", line 122, in _setup_strategy
if self.args.xla:
AttributeError: 'TFTrainingArguments' object has no attribute 'args'
- If the logger.info call is commented out (lines 197-202), the above error is prevented but another error is encountered:
Traceback (most recent call last):
File "run_tf_text_classification.py", line 282, in <module>
main()
File "run_tf_text_classification.py", line 221, in main
max_seq_length=data_args.max_seq_length,
File "run_tf_text_classification.py", line 42, in get_tfds
ds = datasets.load_dataset("csv", data_files=files)
File "/home/qd_team/qdmr_gpu/smart_env/lib/python3.6/site-packages/datasets/load.py", line 604, in load_dataset
**config_kwargs,
File "/home/qd_team/qdmr_gpu/smart_env/lib/python3.6/site-packages/datasets/builder.py", line 158, in __init__
**config_kwargs,
File "/home/qd_team/qdmr_gpu/smart_env/lib/python3.6/site-packages/datasets/builder.py", line 269, in _create_builder_config
for key in sorted(data_files.keys()):
TypeError: '<' not supported between instances of 'NamedSplit' and 'NamedSplit'
Here is a pip freeze:
absl-py==0.10.0
astunparse==1.6.3
cachetools==4.1.1
certifi==2020.6.20
chardet==3.0.4
click==7.1.2
dataclasses==0.7
datasets==1.0.2
dill==0.3.2
filelock==3.0.12
gast==0.3.3
google-auth==1.21.3
google-auth-oauthlib==0.4.1
google-pasta==0.2.0
grpcio==1.32.0
h5py==2.10.0
idna==2.10
importlib-metadata==2.0.0
joblib==0.16.0
Keras-Preprocessing==1.1.2
Markdown==3.2.2
numpy==1.18.5
oauthlib==3.1.0
opt-einsum==3.3.0
packaging==20.4
pandas==1.1.2
protobuf==3.13.0
pyarrow==1.0.1
pyasn1==0.4.8
pyasn1-modules==0.2.8
pyparsing==2.4.7
python-dateutil==2.8.1
pytz==2020.1
regex==2020.7.14
requests==2.24.0
requests-oauthlib==1.3.0
rsa==4.6
sacremoses==0.0.43
scipy==1.4.1
sentencepiece==0.1.91
six==1.15.0
tensorboard==2.3.0
tensorboard-plugin-wit==1.7.0
tensorflow==2.3.0
tensorflow-estimator==2.3.0
termcolor==1.1.0
tokenizers==0.8.1rc2
tqdm==4.49.0
transformers==3.2.0
urllib3==1.25.10
Werkzeug==1.0.1
wrapt==1.12.1
xxhash==2.0.0
zipp==3.2.0
Expected behavior
Model begins to train on custom dataset.
Issue Analytics
- State:
- Created 3 years ago
- Comments:10 (7 by maintainers)
Top Results From Across the Web
AttributeError: 'TFBertModel' object has no attribute 'parameters'
Hello I am trying to train a Bert Model for a tokenizer I had trained. I imported from transformers import TFBertModel model ...
Read more >Trainer - Hugging Face
The Trainer class is optimized for Transformers models and can have surprising behaviors when you use it on other models. When using it...
Read more >SimpleTransformers: Transformers Made Easy - Wandb
In this article, we will build a sentiment classifier on the IMDB dataset using both HuggingFace and SimpleTransformers.
Read more >Fine-tuning a BERT model | Text - TensorFlow
tf-models-official is the TensorFlow Model Garden package. Note that it may not include the latest changes in the tensorflow_models GitHub repo.
Read more >BERT Fine-Tuning Tutorial with PyTorch - Chris McCormick
In this tutorial, we will use BERT to train a text classifier. ... getting an error: AttributeError: 'BertTokenizer' object has no attribute ......
Read more >
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
@sunnyville01 Just install the version on master with
pip install git+https://github.com/huggingface/transformers.git
@pvcastro Can you open a new issue please with all the details to be able for us to reproduce it. This thread is closed and about a different one.