question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

needing area to put download/convert/eval scripts

See original GitHub issue

🚀 Feature request

Would it be useful to allocate a sub-dir in the source code for conversion/eval bash scripts? Some of them are quite complex including a bunch of downloads, moving files around, etc. It’d be good to have those in the repo, so that it’d be easy to re-build data if there was a change/mistake/etc.

note: I’m not proposing to move src/transformers/convert*py.

Let the data speak for itself.

I currently have 2 scripts for fairseq transformer models:

# Convert fairseq transform wmt19 checkpoint.

# To convert run:
# assuming the fairseq data is under data/wmt19.ru-en.ensemble, data/wmt19.en-ru.ensemble, etc

export ROOT=/code/huggingface/transformers-fair-wmt
cd $ROOT
mkdir data

# get data (run once)
wget https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.ensemble.tar.gz
wget https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.ensemble.tar.gz
wget https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.ensemble.tar.gz
wget https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ensemble.tar.gz
tar -xvzf wmt19.en-de.joined-dict.ensemble.tar.gz
tar -xvzf wmt19.de-en.joined-dict.ensemble.tar.gz
tar -xvzf wmt19.en-ru.ensemble.tar.gz
tar -xvzf wmt19.ru-en.ensemble.tar.gz

# run conversions and uploads

export PAIR=ru-en
PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/wmt19.$PAIR.ensemble --pytorch_dump_folder_path data/fsmt-wmt19-$PAIR

export PAIR=en-ru
PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/wmt19.$PAIR.ensemble --pytorch_dump_folder_path data/fsmt-wmt19-$PAIR

export PAIR=de-en
PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/wmt19.$PAIR.joined-dict.ensemble --pytorch_dump_folder_path data/fsmt-wmt19-$PAIR

export PAIR=en-de
PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/wmt19.$PAIR.joined-dict.ensemble --pytorch_dump_folder_path data/fsmt-wmt19-$PAIR

# upload
cd data
transformers-cli upload -y fsmt-wmt19-ru-en
transformers-cli upload -y fsmt-wmt19-en-ru
transformers-cli upload -y fsmt-wmt19-de-en
transformers-cli upload -y fsmt-wmt19-en-de
cd -

# if updating just small files and not the large models, here is a script to generate the right commands:
perl -le 'for $f (@ARGV) { print qq[transformers-cli upload -y $_/$f --filename $_/$f] for map { "fsmt-wmt19-$_" } ("en-ru", "ru-en", "de-en", "en-de")}' vocab-src.json vocab-tgt.json tokenizer_config.json config.json
# add/remove files as needed

Eval script:

# to match fairseq you need to set num_beams=50 in `configuration_fsmt.py` and lower BS

# quick estimate version for quick testing

export PAIR=en-ru
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=8
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src | head -100 > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref | head -100 > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py stas/fsmt-wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS

# ru-en

export PAIR=ru-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py stas/fsmt-wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS

# (expected BLEU: 41.3 http://matrix.statmt.org/matrix/output/1907?run_id=6937)

# en-ru

export PAIR=en-ru
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py stas/fsmt-wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS

# (expected BLEU: 36.4 http://matrix.statmt.org/matrix/output/1914?score_id=37605)

# en-de

export PAIR=en-de
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py stas/fsmt-wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS

# (expected BLEU: 43.1 http://matrix.statmt.org/matrix/output/1909?run_id=6862)

# de-en

export PAIR=de-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py stas/fsmt-wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS

# (expected BLEU: 42.3 http://matrix.statmt.org/matrix/output/1902?run_id=6750)

Then I have a different script for 2 sets of other models for wmt from allen nlp, with 2 scripts each:


# Convert fairseq transform wmt16 en-de checkpoints from https://github.com/jungokasai/deep-shallow


pip install gdown

# get data (run once)

cd data
gdown 'https://drive.google.com/uc?id=1x_G2cjvM1nW5hjAB8-vWxRqtQTlmIaQU'
gdown 'https://drive.google.com/uc?id=1oA2aqZlVNj5FarxBlNXEHpBS4lRetTzU'
gdown 'https://drive.google.com/uc?id=1Wup2D318QYBFPW_NKI1mfP_hXOfmUI9r'
tar -xvzf trans_ende_12-1_0.2.tar.gz
tar -xvzf trans_ende-dist_12-1_0.2.tar.gz
tar -xvzf trans_ende-dist_6-1_0.2.tar.gz

gdown 'https://drive.google.com/uc?id=1mNufoynJ9-Zy1kJh2TA_lHm2squji0i9'
gdown 'https://drive.google.com/uc?id=1iO7um-HWoNoRKDtw27YUSgyeubn9uXqj'
tar -xvzf wmt16.en-de.deep-shallow.dist.tar.gz
tar -xvzf wmt16.en-de.deep-shallow.tar.gz

cp wmt16.en-de.deep-shallow/data-bin/dict.*.txt trans_ende_12-1_0.2
cp wmt16.en-de.deep-shallow.dist/data-bin/dict.*.txt trans_ende-dist_12-1_0.2
cp wmt16.en-de.deep-shallow.dist/data-bin/dict.*.txt trans_ende-dist_6-1_0.2
cp wmt16.en-de.deep-shallow/bpecodes trans_ende_12-1_0.2
cp wmt16.en-de.deep-shallow.dist/bpecodes trans_ende-dist_12-1_0.2
cp wmt16.en-de.deep-shallow.dist/bpecodes trans_ende-dist_6-1_0.2


# another set wmt19-6-6-de-en
gdown 'https://drive.google.com/uc?id=1j6z9fYdlUyOYsh7KJoumRlr1yHczxR5T'
gdown 'https://drive.google.com/uc?id=1yT7ZjqfvUYOBXvMjeY8uGRHQFWoSo8Q5'
gdown 'https://drive.google.com/uc?id=15gAzHeRUCs-QV8vHeTReMPEh1j8excNE'
tar -xvzf wmt19.de-en.tar.gz
tar -xvzf wmt19_deen_base_dr0.1_1.tar.gz
tar -xvzf wmt19_deen_big_dr0.1_2.tar.gz
cp wmt19.de-en/data-bin/dict.en.txt wmt19_deen_base_dr0.1_1
cp wmt19.de-en/data-bin/dict.en.txt wmt19_deen_big_dr0.1_2
cp wmt19.de-en/data-bin/dict.de.txt wmt19_deen_base_dr0.1_1
cp wmt19.de-en/data-bin/dict.de.txt wmt19_deen_big_dr0.1_2

cd -


# run conversions and uploads

# wmt16-en-de set

PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/trans_ende-dist_12-1_0.2 --pytorch_dump_folder_path data/fsmt-wmt16-en-de-dist-12-1

PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/trans_ende-dist_6-1_0.2 --pytorch_dump_folder_path data/fsmt-wmt16-en-de-dist-6-1

PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/trans_ende_12-1_0.2 --pytorch_dump_folder_path data/fsmt-wmt16-en-de-12-1


# wmt19-de-en set

PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/wmt19_deen_base_dr0.1_1 --pytorch_dump_folder_path data/fsmt-wmt19-de-en-6-6-base

PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/wmt19_deen_big_dr0.1_2 --pytorch_dump_folder_path data/fsmt-wmt19-de-en-6-6-big

Eval:


git clone https://github.com/huggingface/transformers
cd transformers
export PAIR=en-de
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=64
export NUM_BEAMS=5
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target

MODEL_PATH=/code/huggingface/transformers-fair-wmt/data/fsmt-wmt16-en-de-dist-12-1
echo $PAIR $MODEL_PATH
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py $MODEL_PATH $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS

MODEL_PATH=/code/huggingface/transformers-fair-wmt/data/fsmt-wmt16-en-de-dist-6-1
echo $PAIR $MODEL_PATH
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py $MODEL_PATH $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS

MODEL_PATH=/code/huggingface/transformers-fair-wmt/data/fsmt-wmt16-en-de-12-1
echo $PAIR $MODEL_PATH
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py $MODEL_PATH $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS


# wmt19-de-en set

export PAIR=de-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=64
export NUM_BEAMS=5
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target

MODEL_PATH=/code/huggingface/transformers-fair-wmt/data/fsmt-wmt19-de-en-6-6-base
echo $PAIR $MODEL_PATH
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py $MODEL_PATH $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS

MODEL_PATH=/code/huggingface/transformers-fair-wmt/data/fsmt-wmt19-de-en-6-6-big
echo $PAIR $MODEL_PATH
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py $MODEL_PATH $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS

So perhaps:

model_scripts/
    arch/
         model1-build.sh
         model1-eval.sh
         model2-build.sh
         model2-eval.sh
   [...]

So in the case of the above scripts, they could be:

model_scripts/fsmt/fairseq-build.sh
model_scripts/fsmt/fairseq-eval.sh
model_scripts/fsmt/allennlp-build.sh
model_scripts/fsmt/allennlp-eval.sh

Thoughts?

Of course, I could just start with this proposal as a PR and we can adjust from there.

Thank you.

(fsmt is not yet merged, in case you wonder about an unfamiliar name)

Issue Analytics

  • State:closed
  • Created 3 years ago
  • Comments:5 (5 by maintainers)

github_iconTop GitHub Comments

1reaction
sshleifercommented, Sep 15, 2020

OK, you’ve convinced me. @julien-c, @LysandreJik @sgugger what do you guys think about

transformers/scripts/{model_name}/ as a place to checkin end to end (possibly bulk) conversion scripts?

Rationale: Marian + FSMT require a few steps before transformers-cli convert + transformers-cli upload to

  • (a) fetch correct tarballs
  • (b) name them correctly
  • © (just fsmt) decide on correct beam search parameters

and it would aid reproducibility to have all that logic/knowledge checked in.

0reactions
stas00commented, Sep 15, 2020
Read more comments on GitHub >

github_iconTop Results From Across the Web

No results found

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found