RuntimeError: Overflow when unpacking long during training the model
See original GitHub issueHi I am training the model for custom dataset for QnA task. I have transformers version 4.0.0 and pytorch version 1.7.1. with the following code, I am getting the issue.
trainer = Trainer(
model=model, # the instantiated 🤗 Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
# evaluation dataset
)
trainer.train()
Error is below:
RuntimeError Traceback (most recent call last)
<ipython-input-16-3435b262f1ae> in <module>
----> 1 trainer.train()
~/.local/lib/python3.7/site-packages/transformers/trainer.py in train(self, model_path, trial)
727 self.control = self.callback_handler.on_epoch_begin(self.args, self.state, self.control)
728
--> 729 for step, inputs in enumerate(epoch_iterator):
730
731 # Skip past any already trained steps if resuming training
~/.local/lib/python3.7/site-packages/torch/utils/data/dataloader.py in __next__(self)
433 if self._sampler_iter is None:
434 self._reset()
--> 435 data = self._next_data()
436 self._num_yielded += 1
437 if self._dataset_kind == _DatasetKind.Iterable and \
~/.local/lib/python3.7/site-packages/torch/utils/data/dataloader.py in _next_data(self)
473 def _next_data(self):
474 index = self._next_index() # may raise StopIteration
--> 475 data = self._dataset_fetcher.fetch(index) # may raise StopIteration
476 if self._pin_memory:
477 data = _utils.pin_memory.pin_memory(data)
~/.local/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py in fetch(self, possibly_batched_index)
42 def fetch(self, possibly_batched_index):
43 if self.auto_collation:
---> 44 data = [self.dataset[idx] for idx in possibly_batched_index]
45 else:
46 data = self.dataset[possibly_batched_index]
~/.local/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py in <listcomp>(.0)
42 def fetch(self, possibly_batched_index):
43 if self.auto_collation:
---> 44 data = [self.dataset[idx] for idx in possibly_batched_index]
45 else:
46 data = self.dataset[possibly_batched_index]
<ipython-input-7-80744e22dabe> in __getitem__(self, idx)
6
7 def __getitem__(self, idx):
----> 8 return {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
9
10 def __len__(self):
<ipython-input-7-80744e22dabe> in <dictcomp>(.0)
6
7 def __getitem__(self, idx):
----> 8 return {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
9
10 def __len__(self):
RuntimeError: Overflow when unpacking long
Issue Analytics
- State:
- Created 2 years ago
- Comments:5 (1 by maintainers)
Top Results From Across the Web
RuntimeError: Overflow when unpacking long · Issue #364
I am training a GPT2 model using Pytorch run_clm_no_trainer.py. Error. Below error happen when model is saving checkpoints. But seem that it ...
Read more >Pytorch training QA error overflow when unpacking long
I am running this code on keras from torch.utils.data import DataLoader from transformers import AdamW from tqdm import tqdm # setup GPU/CPU ...
Read more >Overflow when unpacking long, during FX mode calibration ...
Hello, I am following FX mode post training static quantization ... RuntimeError: Overflow when unpacking long, during FX mode calibration.
Read more >Loading a Pytorch model? by Joe Bastulli - QuantConnect.com
agent.load_state_dict(torch.as_tensor(path)). I keep getting a runtime error when I try to load the path. RuntimeError : Overflow when unpacking long.
Read more >DeepStability - A Database of Numerical Methods for Deep ...
Index Library Commit hash Language Type of commit
1 PyTorch ac72881f3ff8c46c2a5cf8b09d02babf46bc4c85 CUDA Fix
2 PyTorch dfc7fa03e5d33f909b9d7853dd001086f5d782a0 Python Fix
3 PyTorch 8e507ad00ebdfd0ae84bc03718e9c2cb74b8573b yaml Fix
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Hi,
I am using transformers version 4.0.0 and pytorch version 1.6.0. I am getting the same error.
In order to get help faster, please also include all that is asked in the issue template, with the model, dataset used, all software versions as prompted by the template. Thanks!