[s2s] distributed eval gets stuck on error w/ multigpu
See original GitHub issueexamples/seq2seq/distillation.py
and probably others remain hanging on internal error when run w/ multiple gpus (2 here):
rm -r /tmp/tmpqajqhzwo; PYTHONPATH="src" python examples/seq2seq/distillation.py --supervise_forward --normalize_hidden --label_smoothing=0.0 --eval_beams=1 --val_metric=loss --save_top_k=1 --adafactor --early_stopping_patience=-1 --logger_name=default --length_penalty=0.5 --cache_dir= --task=summarization --num_workers=2 --alpha_hid=0 --freeze_embeds --sortish_sampler --student_decoder_layers=1 --val_check_interval=0.5 --output_dir=/tmp/tmpqajqhzwo --no_teacher --fp16_opt_level=O1 --gpus=2 --max_grad_norm=1.0 --do_train --do_predict --accumulate_grad_batches=1 --seed=42 --model_name_or_path=sshleifer/tinier_bart --config_name= --tokenizer_name=facebook/bart-large --learning_rate=0.3 --lr_scheduler=linear --weight_decay=0.0 --adam_epsilon=1e-08 --warmup_steps=0 --max_epochs=2 --train_batch_size=1 --eval_batch_size=2 --max_source_length=12 --max_target_length=12 --val_max_target_length=12 --test_max_target_length=12 --n_train=-1 --n_val=-1 --n_test=-1 --student_encoder_layers=1 --freeze_encoder --data_dir=examples/seq2seq/test_data/wmt_en_ro --alpha_mlm=0.2 --alpha_ce=0.8 --teacher=sshleifer/bart-tiny-random
last output:
initializing ddp: GLOBAL_RANK: 0, MEMBER: 1/2
Traceback (most recent call last):
File "/mnt/nvme1/code/huggingface/transformers-master/examples/seq2seq/distillation.py", line 281, in <module>
distill_main(args)
File "/mnt/nvme1/code/huggingface/transformers-master/examples/seq2seq/distillation.py", line 269, in distill_main
check_output_dir(args, expected_items=3)
File "/mnt/nvme1/code/huggingface/transformers-master/examples/seq2seq/utils.py", line 641, in check_output_dir
raise ValueError(
ValueError: Output directory (/tmp/tmpqajqhzwo) already exists and has 7 items in it (expected 3 items). Use --overwrite_output_dir to overcome.
and now it hangs, holding onto the gpu. Can’t even Ctrl-C the process - needed to suspend+kill manually.
I know that adding --overwrite_output_dir
will remove the error, but this is not the issue. It shouldn’t hang on error (e.g. the test suite needs to continue running in such event).
Issue Analytics
- State:
- Created 3 years ago
- Comments:6 (5 by maintainers)
Top Results From Across the Web
Eval freezes on local multi GPU Deepspeed run
I am trying to finetune huggingface model with multiple gpus using deepspeed. deepspeed --num_gpus=1 run_common_voice.py --deepspeed ds_config.
Read more >Topics tagged distributed-training - TensorFlow Forum
This was the bug in tensorflow,tensorflow:Using MirroredStrategy with devices · General Discussion · help_request , distributed-training. 1 ; Multi_gpu_model.
Read more >Multi-GPU Training - YOLOv5 Documentation
Docker Image is recommended for all Multi-GPU trainings. ... python -m torch.distributed.run --nproc_per_node 2 train.py --batch 64 --data coco.yaml ...
Read more >Untitled
Direccion del centro medico de occidente guadalajara, What is the best heartworm ... What does dual slot gpu mean, Autoturisme executate silit brasov, ......
Read more >Distributed GPU training guide - Azure Machine Learning
The training code is instrumented correctly with Horovod before adding the Azure ML parts; Your Azure ML environment contains Horovod and MPI.
Read more >
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
@williamFalcon @SeanNaren (lightning friends)
Do you guys have a clever way to collect failures in your multigpu tests? When something breaks, our multigpu test hangs.
This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions.