Object detection net(eg:faster_rcnn_resnet101) not worked with deconv_visualization
See original GitHub issueObject detection net(eg:faster_rcnn_resnet101) not worked with deconv_visualization. With activation_visualization works well. Error:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-4-9aba9f0fced7> in <module>()
3 layers=layers,
4 path_logdir=os.path.join("Log","Inception5"),
----> 5 path_outdir=os.path.join("Output","Inception5"))
/notebooks/workspace/github/tf_cnnvis/tf_cnnvis/tf_cnnvis.py in deconv_visualization(sess_graph_path, value_feed_dict, input_tensor, layers, path_logdir, path_outdir)
408 def deconv_visualization(sess_graph_path, value_feed_dict, input_tensor = None, layers = 'r', path_logdir = './Log', path_outdir = "./Output"):
409 is_success = _get_visualization(sess_graph_path, value_feed_dict, input_tensor = input_tensor, layers = layers, method = "deconv",
--> 410 path_logdir = path_logdir, path_outdir = path_outdir)
411 return is_success
412
/notebooks/workspace/github/tf_cnnvis/tf_cnnvis/tf_cnnvis.py in _get_visualization(sess_graph_path, value_feed_dict, input_tensor, layers, path_logdir, path_outdir, method)
167 elif layer != None and layer.lower() in dict_layer.keys():
168 layer_type = dict_layer[layer.lower()]
--> 169 is_success = _visualization_by_layer_type(g, value_feed_dict, input_tensor, layer_type, method, path_logdir, path_outdir)
170 else:
171 print("Skipping %s . %s is not valid layer name or layer type" % (layer, layer))
/notebooks/workspace/github/tf_cnnvis/tf_cnnvis/tf_cnnvis.py in _visualization_by_layer_type(graph, value_feed_dict, input_tensor, layer_type, method, path_logdir, path_outdir)
225
226 for layer in layers:
--> 227 is_success = _visualization_by_layer_name(graph, value_feed_dict, input_tensor, layer, method, path_logdir, path_outdir)
228 return is_success
229
/notebooks/workspace/github/tf_cnnvis/tf_cnnvis/tf_cnnvis.py in _visualization_by_layer_name(graph, value_feed_dict, input_tensor, layer_name, method, path_logdir, path_outdir)
289 elif method == "deconv":
290 # deconvolution
--> 291 results = _deconvolution(graph, sess, op_tensor, X, feed_dict)
292 elif method == "deepdream":
293 # deepdream
/notebooks/workspace/github/tf_cnnvis/tf_cnnvis/tf_cnnvis.py in _deconvolution(graph, sess, op_tensor, X, feed_dict)
335 c += 1
336 if c > 0:
--> 337 out.extend(sess.run(reconstruct[:c], feed_dict = feed_dict))
338 return out
339 def _deepdream(graph, sess, op_tensor, X, feed_dict, layer, path_outdir, path_logdir):
/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
898 try:
899 result = self._run(None, fetches, feed_dict, options_ptr,
--> 900 run_metadata_ptr)
901 if run_metadata:
902 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
1118 # Create a fetch handler to take care of the structure of fetches.
1119 fetch_handler = _FetchHandler(
-> 1120 self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles)
1121
1122 # Run request and get response.
/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py in __init__(self, graph, fetches, feeds, feed_handles)
425 """
426 with graph.as_default():
--> 427 self._fetch_mapper = _FetchMapper.for_fetch(fetches)
428 self._fetches = []
429 self._targets = []
/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py in for_fetch(fetch)
243 elif isinstance(fetch, (list, tuple)):
244 # NOTE(touts): This is also the code path for namedtuples.
--> 245 return _ListFetchMapper(fetch)
246 elif isinstance(fetch, dict):
247 return _DictFetchMapper(fetch)
/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py in __init__(self, fetches)
350 """
351 self._fetch_type = type(fetches)
--> 352 self._mappers = [_FetchMapper.for_fetch(fetch) for fetch in fetches]
353 self._unique_fetches, self._value_indices = _uniquify_fetches(self._mappers)
354
/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py in <listcomp>(.0)
350 """
351 self._fetch_type = type(fetches)
--> 352 self._mappers = [_FetchMapper.for_fetch(fetch) for fetch in fetches]
353 self._unique_fetches, self._value_indices = _uniquify_fetches(self._mappers)
354
/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py in for_fetch(fetch)
240 if fetch is None:
241 raise TypeError('Fetch argument %r has invalid type %r' % (fetch,
--> 242 type(fetch)))
243 elif isinstance(fetch, (list, tuple)):
244 # NOTE(touts): This is also the code path for namedtuples.
TypeError: Fetch argument None has invalid type <class 'NoneType'>
Addition:
Variable reconstruct (defined at line 327 in tf_cnnvis.py ) is [None, None, None, None, None, None, None, None]. TensorFlow version is 1.9. When I use TensorFlow 1.4, I got same Error as #26
Issue Analytics
- State:
- Created 5 years ago
- Comments:14
Top Results From Across the Web
ML Object detection is not working with my model. Why?
Hello I am using the Object Detection project sample in Visual Studio 2019 Preview. The only change I did is created my own...
Read more >Object detection for dice not work… | Apple Developer Forums
I'm trying to create a model for dice detection. I've take about 100 photos of dice on the same side (1 point). Are-my...
Read more >Object Detection and Recognition Using YOLO
The object recognition problem can be defined as a labelling problem based on models of known objects.
Read more >Association-Guided 3D Point Cloud Object Detection Network
Inspired by human associative recognition, we propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
Read more >Small Object Detection in Infrared Images - MDPI
Based on this concept, we propose a domain adaptation framework to force a model to extract similar features regardless of the source domain....
Read more >
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found

@aggpankaj2 which model are you using, can you provide a link?
Also, what is the error?
@wildpig22 thanks for your code, but not working.