NotImplementedError: Got <class 'NoneType'>, but numpy array, torch tensor, or caffe2 blob name are expected.
See original GitHub issueIssue description
I’m training a ‘softseg’ network and got this error:
Terminal output
[32m2022-12-20 11:20:54.181[39m | [1mINFO [22m | [36mivadomed.training[39m:[36mtrain[39m:[36m122[39m - [1mInitialising model's weights from scratch.
[32m2022-12-20 11:20:56.595[39m | [1mINFO [22m | [36mivadomed.training[39m:[36mtrain[39m:[36m138[39m - [1mScheduler parameters: {'name': 'CosineAnnealingLR', 'base_lr': 1e-05, 'max_lr': 0.001}
[32m2022-12-20 11:20:56.597[39m | [1mINFO [22m | [36mivadomed.training[39m:[36mtrain[39m:[36m163[39m - [1mSelected Loss: AdapWingLoss
[32m2022-12-20 11:20:56.597[39m | [1mINFO [22m | [36mivadomed.training[39m:[36mtrain[39m:[36m164[39m - [1m with the parameters: []
Training: 2%|███▍ | 1/50 [00:00<?, ?it/s]/home/GRAMES.POLYMTL.CA/p101317/code/ivadomed/ivadomed/transforms.py:304: RuntimeWarning: invalid value encountered in divide
data_out = (sample - sample.mean()) / sample.std()
[32m2022-12-20 11:22:05.643[39m | [1mINFO [22m | [36mivadomed.training[39m:[36mtrain[39m:[36m238[39m - [1mEpoch 1 training loss: nan. Dice training loss: nan.
Epoch 1 training loss: nan. Dice training loss: nan.
Training: 2%|███▍ | 1/50 [01:45<?, ?it/s]
Traceback (most recent call last):
File "/home/GRAMES.POLYMTL.CA/p101317/.conda/envs/ivadomed/bin/ivadomed", line 33, in <module>
sys.exit(load_entry_point('ivadomed', 'console_scripts', 'ivadomed')())
File "/home/GRAMES.POLYMTL.CA/p101317/code/ivadomed/ivadomed/main.py", line 623, in run_main
run_command(context=context,
File "/home/GRAMES.POLYMTL.CA/p101317/code/ivadomed/ivadomed/main.py", line 457, in run_command
best_training_dice, best_training_loss, best_validation_dice, best_validation_loss = imed_training.train(
File "/home/GRAMES.POLYMTL.CA/p101317/code/ivadomed/ivadomed/training.py", line 304, in train
writer.add_scalars('Validation/Metrics', metrics_dict, epoch)
File "/home/GRAMES.POLYMTL.CA/p101317/.conda/envs/ivadomed/lib/python3.8/site-packages/torch/utils/tensorboard/writer.py", line 403, in add_scalars
fw.add_summary(scalar(main_tag, scalar_value),
File "/home/GRAMES.POLYMTL.CA/p101317/.conda/envs/ivadomed/lib/python3.8/site-packages/torch/utils/tensorboard/summary.py", line 249, in scalar
scalar = make_np(scalar)
File "/home/GRAMES.POLYMTL.CA/p101317/.conda/envs/ivadomed/lib/python3.8/site-packages/torch/utils/tensorboard/_convert_np.py", line 24, in make_np
raise NotImplementedError(
NotImplementedError: Got <class 'NoneType'>, but numpy array, torch tensor, or caffe2 blob name are expected.
config file
{
"command": "train",
"gpu_ids": [
5
],
"path_output": "model_seg_lesion_mp2rage_20221220_112014",
"model_name": "model_seg_lesion_mp2rage",
"debugging": true,
"log_file": "log",
"object_detection_params": {
"object_detection_path": null,
"safety_factor": [
1.0,
1.0,
1.0
],
"gpu_ids": 5,
"path_output": "model_seg_lesion_mp2rage_20221220_112014"
},
"wandb": {
"wandb_api_key": "9095e2bc9e4ab445d478c9c8a81759ae908be8c6",
"project_name": "basel-mp2rage-lesion",
"group_name": "3D",
"run_name": "run-1",
"log_grads_every": 100
},
"loader_parameters": {
"path_data": [
"/home/GRAMES.POLYMTL.CA/p101317/data_nvme_p101317/data_seg_mp2rage_20221217_170634/data_processed_lesionseg"
],
"subject_selection": {
"n": [],
"metadata": [],
"value": []
},
"target_suffix": [
"_lesion-manualHaris"
],
"extensions": [
".nii.gz"
],
"roi_params": {
"suffix": null,
"slice_filter_roi": null
},
"contrast_params": {
"training_validation": [
"UNIT1"
],
"testing": [
"UNIT1"
],
"balance": {}
},
"slice_filter_params": {
"filter_empty_mask": true,
"filter_empty_input": true
},
"patch_filter_params": {
"filter_empty_mask": false,
"filter_empty_input": false
},
"slice_axis": "axial",
"multichannel": false,
"soft_gt": true,
"is_input_dropout": false,
"bids_validate": true
},
"split_dataset": {
"fname_split": null,
"random_seed": 42,
"split_method": "participant_id",
"data_testing": {
"data_type": null,
"data_value": []
},
"balance": null,
"train_fraction": 0.6,
"test_fraction": 0.2
},
"training_parameters": {
"batch_size": 16,
"loss": {
"name": "AdapWingLoss"
},
"training_time": {
"num_epochs": 50,
"early_stopping_patience": 50,
"early_stopping_epsilon": 0.001
},
"scheduler": {
"initial_lr": 0.001,
"lr_scheduler": {
"name": "CosineAnnealingLR",
"base_lr": 1e-05,
"max_lr": 0.001
}
},
"balance_samples": {
"applied": false,
"type": "gt"
},
"mixup_alpha": null,
"transfer_learning": {
"retrain_model": null,
"retrain_fraction": 1.0,
"reset": true
}
},
"default_model": {
"name": "Unet",
"dropout_rate": 0.3,
"bn_momentum": 0.1,
"depth": 3,
"is_2d": true,
"final_activation": "relu"
},
"uncertainty": {
"epistemic": false,
"aleatoric": false,
"n_it": 0
},
"postprocessing": {
"remove_noise": {
"thr": -1
},
"keep_largest": {},
"binarize_prediction": {
"thr": 0.5
},
"uncertainty": {
"thr": -1,
"suffix": "_unc-vox.nii.gz"
},
"fill_holes": {},
"remove_small": {
"unit": "vox",
"thr": 3
}
},
"evaluation_parameters": {
"object_detection_metrics": true,
"target_size": {
"unit": "vox",
"thr": [
20,
100
]
},
"overlap": {
"unit": "vox",
"thr": 3
}
},
"transformation": {
"Resample": {
"hspace": 1,
"wspace": 1,
"dspace": 1
},
"RandomReverse": {
"applied_to": [
"im",
"gt"
],
"dataset_type": [
"training"
]
},
"RandomAffine": {
"degrees": 10,
"scale": [
0.2,
0.2,
0.2
],
"translate": [
0.2,
0.2,
0.2
],
"applied_to": [
"im",
"gt"
],
"dataset_type": [
"training"
]
},
"CenterCrop": {
"size": [
32,
32,
128
]
},
"NormalizeInstance": {
"applied_to": [
"im"
]
}
},
"FiLMedUnet": {
"applied": false,
"metadata": "contrasts",
"film_layers": [
0,
1,
0,
0,
0,
0,
0,
0,
0,
0
]
},
"Modified3DUNet": {
"applied": true,
"length_3D": [
32,
32,
32
],
"stride_3D": [
32,
32,
4
],
"attention": false,
"n_filters": 8
},
"training_sha256": {
"sub-P173_UNIT1.nii.gz": "d7faf510ebc0f77d4bceb61c2fd1e37e7aaf4ea50f55e905ce4ccbaf8085ae2f",
"sub-P057_UNIT1.nii.gz": "29ef9080c42db1979e976ef10fb72cb8e5b35f26f30980719c5efdb8e15997fc",
"sub-P089_UNIT1.nii.gz": "383f3f135f6a4b9fb6c89d4316317f04db135d5add9ce64612f514dfeca3825d",
"sub-P199_UNIT1.nii.gz": "2661ce225413dd659874a3aab63869a9c071e91628e68309c50a628b50a5c49a",
"sub-P001_UNIT1.nii.gz": "275c4ddf275775fa011a44b03e481acc518b49a864d6f8c1d86f803c850009d4",
"sub-P188_UNIT1.nii.gz": "b14c01f6a398edaced39afc4314dee4d90f974348ac3e43fcb145286df9e1612",
"sub-P030_UNIT1.nii.gz": "de196f14aa686741ad4cb2e48f6898848bf6ba9bd5cdb61216f329a503190770",
"sub-P022_UNIT1.nii.gz": "3033d6d6a7b64f0bda62671a2dd5aa8e1ed5690bab7d40bf653c0115416c6e56",
"sub-P040_UNIT1.nii.gz": "df98742eb2ca7d2d0fce70f46b3bd6d3de15c2ba5d537bbebe36353bf90ff2a6",
"sub-P063_UNIT1.nii.gz": "94b59476d65efb78c7e89edf905a0473863c662d0d8445c13e3711003ce69ab9",
"sub-P183_UNIT1.nii.gz": "21817290c565177c048f3203b71a62efa9563c34ab953c11b7ef566a2a87cd5f",
"sub-P068_UNIT1.nii.gz": "a88f72ad61a87c2c0e22276536e8ae2e531f835f2fab485712c4ec63def3d4aa",
"sub-P153_UNIT1.nii.gz": "4dc6af0665ff2eefbf39958531b5f19b839b3adf86f55d07d90928a740529ac6",
"sub-P081_UNIT1.nii.gz": "f52152f37ddb9ab69b43c0b42429003c1dd36355fa2f4c708901e45fed873b88",
"sub-P003_UNIT1.nii.gz": "42b1e26a9ac14dcbf2b9efd0e13a0b9dec5b58aae5b8247aa03a9909bb5c8227",
"sub-P179_UNIT1.nii.gz": "b1d2566e618553f90451bc8e9530260609c76a8a3d13f394f42eab4819165ba4",
"sub-P110_UNIT1.nii.gz": "1f50c8e50fb1054c979e4e892cf0990177fa4d3fb9e5e50345621e7feef6fb3a",
"sub-P035_UNIT1.nii.gz": "4cd4ccf42a2e1d86032115c929d3caf671cb6876509a41e5020cd0b58f48c924",
"sub-P101_UNIT1.nii.gz": "2606d1fdf15259d6790c9b74259716c910cef7921c65572993d60b17e32c50e5",
"sub-P095_UNIT1.nii.gz": "e201ab6c4498988170528213c104dfeb55e743b470178712da8a6d692e6d21b3",
"sub-P133_UNIT1.nii.gz": "d356d78fb82e3e712a808eccb681a3f759985333e06fe6767b4006d4fe49006b",
"sub-P029_UNIT1.nii.gz": "946f2dbf028bac08f02042751bf53bd301d452b6c7b6db0d89d8e67491b21777",
"sub-P067_UNIT1.nii.gz": "b86783c8f475cad23b3f414aa6e163a97d533b72b5f251f719a988a5345b9c0e",
"sub-P249_UNIT1.nii.gz": "9128cb1b4d47ea76005bc99422647a9a0be88da1415740f97a6819cde8621196",
"sub-P080_UNIT1.nii.gz": "ce751c30ab5ea3f9c3f82eb79730c9131823f7325cea652c823f0ddaaa502d8c",
"sub-P193_UNIT1.nii.gz": "871c200cce0c3b6105f6a6e9ca6e4bc129b1c1cf2a956e357a1e62b08fd276ea",
"sub-P039_UNIT1.nii.gz": "1034813df5c641a83a0aaa3613f016ff3c50e66008394cd41cb09554fd282cbe",
"sub-P162_UNIT1.nii.gz": "5ca25c14d41072811b35e3034c5b6ca13d5121649e56839883151a5a13936ee3",
"sub-P048_UNIT1.nii.gz": "a9a20aa2723ae2503cb55d12204a29ba45f7a65770ac3645b34fa20b0ee5fb64",
"sub-P200_UNIT1.nii.gz": "b80015c38d156bedb602b0f4ccdf58534378657cb6bc494796006d826e0b90c6",
"sub-P123_UNIT1.nii.gz": "95d8a172b13fd640f47566f736f5060b5a341f9e89342d8a90155038612ac602",
"sub-P012_UNIT1.nii.gz": "beac0203441d167b9fa513b1aa6fa62156743f55a6f4f3758cb80b6281f655b5",
"sub-P074_UNIT1.nii.gz": "807ab79818f090b312b897c7b1ff2fca660006bb1586be907bd0c5dbcb0295ab",
"sub-P092_UNIT1.nii.gz": "aa409241dbe1bcca90c843f42240aab275d90784b12841d0344932cd189f499b",
"sub-P045_UNIT1.nii.gz": "e66e5ba2114de28c41dbbdc4e2e03f66eb8234267daee3075f47c7f3defd2ba7",
"sub-P069_UNIT1.nii.gz": "425c5cf86a7accb6a6c447db8e4bbfac21b9b3586c87429df0654540ddf2ef64",
"sub-P073_UNIT1.nii.gz": "6201cd9398560717e8395f087363fc59d84d0c796496a953f37cc68d17c06f8f",
"sub-P097_UNIT1.nii.gz": "2492f8ed9c1cf2b1d9d187de53d9a16f36919615557ef0dcd419d643b97f05de",
"sub-P185_UNIT1.nii.gz": "686e202f743e9b9e1a5a4305f37b3b3c88170cb6e72e915eaab971f7a3cfdcfc",
"sub-P192_UNIT1.nii.gz": "f76121438526ff10ac1276b4a02746115eb5b48a37c0a22b68b8268eadd103d4",
"sub-P007_UNIT1.nii.gz": "fdd254ccf7ae1c59debf1ff4978e25307a2aefb363fb44bb5f1528ea3545df9a",
"sub-P117_UNIT1.nii.gz": "e85f4621ecfb2852b20d95fabc6ff3ea7fbf0748af0f3c065a0d210d635bd892",
"sub-P176_UNIT1.nii.gz": "9ab90a46287cccb02834d564859307a09cb0aa7ac1b675a04124ead536a9d830",
"sub-P050_UNIT1.nii.gz": "ca88ac95c80169df151a6db5c5eb6e660f568b6e0d1fddd4f078620e45331871",
"sub-P141_UNIT1.nii.gz": "c4634fd7f7ff6c7a5bdf31068ecb9d4cb991d59e33510acfdbfcfef5afac46be",
"sub-P144_UNIT1.nii.gz": "83a1e78105ab37d66e45025ae6264e90d7e7ee335dbc93371d785ea494dd6793",
"sub-P024_UNIT1.nii.gz": "d9c4c29c1deb96a670948db8e2da063b005e0e30d51e2679ebaa49c42674a9fa",
"sub-P163_UNIT1.nii.gz": "5cc52879f172e9f37865fa15f4d877b5a250649cb1126811a595701b1c5824f5",
"sub-P051_UNIT1.nii.gz": "06d92792653132f348dd6f7becbf875c3eb13ee01b1b7583848bd069b2065cf4",
"sub-P031_UNIT1.nii.gz": "20074cd10956ead4039413781bd0bdda0ff68bddd9c5a6d06e8fe8dcfeea4711",
"sub-P161_UNIT1.nii.gz": "9e4a81c46c054bb39bf45b50671af45b7cb03f1028bac9ec368db3a19bd43d42",
"sub-P042_UNIT1.nii.gz": "7022e4e9855b54b8850cef2b7c3249e4b786e18e30a3aba0d1b5eff7d9798cc0",
"sub-P044_UNIT1.nii.gz": "28f17d374dea69d3a1c38db130a29909f594207178c760e02b33faa3b62871c8",
"sub-P005_UNIT1.nii.gz": "dc3957affe67fc51fd09839c3e8f9bf7cd89d6ac70456fad4780f5b13edb1fd9",
"sub-P078_UNIT1.nii.gz": "8f825e17e68f7a2f96b9290e94270d91d4a704adfa853152fb64a6a3830a4cc7",
"sub-P105_UNIT1.nii.gz": "a37fffc33193437cbd28803ef295739186d7c8c2b8acc7b88b3a6e801b9396af",
"sub-P149_UNIT1.nii.gz": "307bfafd210e120e69620677b7904b5821214ae26c7b3e87dd3aaba5a859adc4",
"sub-P147_UNIT1.nii.gz": "5410e4e9f6886e38da86d5e0f01d5085eaa6c6546eec00a5dbc35d963221bb5b",
"sub-P096_UNIT1.nii.gz": "ba296d68d8b94e0221f5b785d1afb1691af2fbaf9adfabdd21ff38f2e1400b39",
"sub-P148_UNIT1.nii.gz": "7bc5464f6407072fcad6fb0f7a320b63bec54aa3ec6974eb311993642c574790",
"sub-P241_UNIT1.nii.gz": "f224fd83c1d4612a3e070c8ea52a098850ab6e0b6c60e0654fbdcef0e4e1a07a",
"sub-P187_UNIT1.nii.gz": "7af9f491f6aeead04829775c2fd4d17b2a52e7d88bfd5c0509464b4820066944",
"sub-P049_UNIT1.nii.gz": "baa96097a131992d62a6bcb74d397607b7106694a2cb6560d9d536234b0912f1",
"sub-P142_UNIT1.nii.gz": "e6b957fce9b91077e515b5935ff4fc53d8ae75bd917c07fbafc997d72dc44c6e",
"sub-P052_UNIT1.nii.gz": "4019d9d6d8732e74863846feeb2df66a97d50caeeaf6fb68283cddc0381e2f7a",
"sub-P055_UNIT1.nii.gz": "d33e55cb2361fab0fa4ddd85e23209004784db1b307cb69dee92fed3aedc5394",
"sub-P243_UNIT1.nii.gz": "49cdc5011616019b3e72981685699bcf0666b584edc2e189b4a59d50ae2f45e7",
"sub-P140_UNIT1.nii.gz": "5691e29530f45359cfb2b478ea0bcf528df81498edaf11d36011d52809e4df39",
"sub-P021_UNIT1.nii.gz": "7a04b074dc304a83a12879e58092fa462d75d388fea0a7d9c3f672d962e9bf18",
"sub-P104_UNIT1.nii.gz": "b4b50fd64c44c38ac0b1598b36cff22395b58e56306dd287561e91b252ded5b7",
"sub-P124_UNIT1.nii.gz": "977bf31c8516eee05933daa2913d52cf2c634bd6351799386916029b1c505673",
"sub-P138_UNIT1.nii.gz": "e1cc2ef1b61803a5aa633008dc11a84a93d9d4359fd5a0c2949f75de6c1beea2",
"sub-P004_UNIT1.nii.gz": "7b9b6ac2376874cf5f80f4ce235c1388bcab3304422b2ded699e1c14732067c1",
"sub-P085_UNIT1.nii.gz": "131655bdec44dfed232d3b345bde224f8786cf58df091a39ddf495bfc573d20e",
"sub-P122_UNIT1.nii.gz": "c180696f478aec9bd48389b8e031fa0977d3bafbce46ce0015f4a4690817c7bf",
"sub-P034_UNIT1.nii.gz": "1391480cbc5db75238395ad8bd8276b5cd301919c5087878805e1216da607705",
"sub-P244_UNIT1.nii.gz": "a84e3d47896bd248a5a8ea92f8db1e137924278076fb25e6e67a48bc56d78bca",
"sub-P151_UNIT1.nii.gz": "e13c0841add4ba4286411bb0faac384ecb7f8ecc17b89822289be95e7fb7a051",
"sub-P134_UNIT1.nii.gz": "bf702ad78d674a6dd8e0557c4b2173c880666d898ce38afbd5d0c25e53095158",
"sub-P194_UNIT1.nii.gz": "7b126553ac7d96c87c1207930d612f536031508b593d82efdd39a1ceb8d6c986",
"sub-P182_UNIT1.nii.gz": "1e2dfcc6293faff4c8689ae7cf07dcf49b2a958ec84875a7bb145daae8f8275c",
"sub-P010_UNIT1.nii.gz": "883743dd1d33c7aa4873cd01cfaa8c142660f4951661695a75e7da6030682fd4",
"sub-P108_UNIT1.nii.gz": "4176a197454a48dbcbab5aff045828db750121d186da6fc31c924035edd271bb",
"sub-P120_UNIT1.nii.gz": "b57bbfef8c1ffe3fa653ca096406ec74a112c43d0ae158ed18a0b0045ee9f8ec",
"sub-P109_UNIT1.nii.gz": "78d47ae447d6d8963a833a481df09750163f35fd612742033aece096403e01e4",
"sub-P116_UNIT1.nii.gz": "781d420cc3acbb8d1683a2e9f34fa83b9216e5b3fe39aab6dd71c45bb167bb58",
"sub-P121_UNIT1.nii.gz": "177ccbff5a04d3c48f7e59c7d6d24f06340a8b8f1e681ac2d1054d34c64e1938",
"sub-P072_UNIT1.nii.gz": "4932e5d4d1ec76b6b8d1dc622d9803abd5d8e235c84453502e8d004b83608ff5",
"sub-P038_UNIT1.nii.gz": "c8dff094c06d7a2893a1fe585a5636f7836d9cceebfbc9a6c901f48b6370e0f0",
"sub-P046_UNIT1.nii.gz": "8dbbbe33e810c8b3b3e29dfe763231ae5eb429383b095e4fd03cd298645606c3",
"sub-P125_UNIT1.nii.gz": "dac49318d803625cfe2ec5fb29c3c5ca3623bb18b74d01d9e0cf50dbb512d6da",
"sub-P084_UNIT1.nii.gz": "874e440642e9b4ac982bfafa10940f2a3698a0a7581ba41781b56778ea282186",
"sub-P172_UNIT1.nii.gz": "242f5e4adaf85ad29c618dbdffee572c09a110eb1c83161db556c1eba030d1aa",
"sub-P083_UNIT1.nii.gz": "3832285ebba279320e5c2186da045738caf69ff4c362dfa82bd4fe9fcca0b21f",
"sub-P077_UNIT1.nii.gz": "8153218e02140d8384962dec49f0ee0ad28f387cb14aff7ab45a444375a0da60",
"sub-P011_UNIT1.nii.gz": "ab1a746ba5d751445fd67a583cdf869ab014db13ef287d99a47a762e20fc6f34",
"sub-P113_UNIT1.nii.gz": "0c0f493ec6376a07d87c2f1df6f81578695e81c8e646223408c31c1f570deede",
"sub-P102_UNIT1.nii.gz": "d08509029f5d2900bd193f194491d1989bffb904d75a55f63097e4ea588904f0",
"sub-P062_UNIT1.nii.gz": "0b2baceb4a2df76b3d579a5d075343904fbc41eb1ebbb7a1c3c34fab4cf26a48",
"sub-P053_UNIT1.nii.gz": "6de0ffd47e6722fa582ead289478a14d89510a3bca18c36cfa44ca544e99d277",
"sub-P126_UNIT1.nii.gz": "01071bef694b7cb8098cde73c8e9db5eac6d86cd6bbbfbac8db2ccc5c555387b",
"sub-P019_UNIT1.nii.gz": "bd00a5592ae1158d7ef349f5fa4739e1e16f03538daee6a64d54a41e745200df",
"sub-P033_UNIT1.nii.gz": "d0005f04e4670aaa20b5f8935e849879bb5ef61615af6f4e3e75f9c1ef62e80d",
"sub-P159_UNIT1.nii.gz": "c1c565501a0252c5810a9081329d7c4c1240404fab6ecd4c2b17b9e22c5b274b",
"sub-P197_UNIT1.nii.gz": "7cab9ed02bb185b014dc8c000372b7011afef2a223e282b58e2928930b203e8b",
"sub-P169_UNIT1.nii.gz": "aae51a60ea1856d11f1b5a024d35d71c87bef882b2b763c4593cd85fce5ec763"
}
}
Issue Analytics
- State:
- Created 9 months ago
- Comments:12 (12 by maintainers)
Top Results From Across the Web
Got <class 'NoneType'>, but numpy array, torch tensor, or ...
NotImplementedError: Got <class 'NoneType'>, but numpy array, torch tensor, or caffe2 blob name are expected. #140.
Read more >Conversion error at validation step - PyTorch Forums
NotImplementedError : Got <class 'torch.nn.modules.loss.MSELoss'>, but numpy array, torch tensor, or caffe2 blob name are expected.
Read more >pic should be Tensor or ndarray. Got <class 'NoneType'>
I want to train a network using NYU dataset, but I am getting an error. enter image description here. The error happens while...
Read more >Got <class '__main__.AverageMeter'>, but expected numpy ...
format(type(x))) NotImplementedError: Got <class '__main__.AverageMeter'>, but expected numpy array or torch tensor.
Read more >Pytorch里用tensorboard将两条曲线画在一张图里面(报错
NotImplementedError : Got <class 'dict'>, but numpy array, torch tensor, or caffe2 blob name are expected. 运行截图
Read more >
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Yes, and that also seems like a good argument to revive the patch filter for 3D subvolumes in #1164. I can continue to investigate tomorrow.
Yes I think so. Just before the error I get this warning which point to an empty patch:
But then, the error itself comes from tensorboard: