question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

NotImplementedError: Got <class 'NoneType'>, but numpy array, torch tensor, or caffe2 blob name are expected.

See original GitHub issue

Issue description

I’m training a ‘softseg’ network and got this error:

Terminal output

2022-12-20 11:20:54.181 | INFO     | ivadomed.training:train:122 - Initialising model's weights from scratch.
2022-12-20 11:20:56.595 | INFO     | ivadomed.training:train:138 - Scheduler parameters: {'name': 'CosineAnnealingLR', 'base_lr': 1e-05, 'max_lr': 0.001}
2022-12-20 11:20:56.597 | INFO     | ivadomed.training:train:163 - Selected Loss: AdapWingLoss
2022-12-20 11:20:56.597 | INFO     | ivadomed.training:train:164 - 	with the parameters: []
Training:   2%|███▍                                                                                                                                                                      | 1/50 [00:00<?, ?it/s]/home/GRAMES.POLYMTL.CA/p101317/code/ivadomed/ivadomed/transforms.py:304: RuntimeWarning: invalid value encountered in divide
  data_out = (sample - sample.mean()) / sample.std()
2022-12-20 11:22:05.643 | INFO     | ivadomed.training:train:238 - Epoch 1 training loss: nan.	Dice training loss: nan.
Epoch 1 training loss: nan.	Dice training loss: nan.
Training:   2%|███▍                                                                                                                                                                      | 1/50 [01:45<?, ?it/s]
Traceback (most recent call last):
  File "/home/GRAMES.POLYMTL.CA/p101317/.conda/envs/ivadomed/bin/ivadomed", line 33, in <module>
    sys.exit(load_entry_point('ivadomed', 'console_scripts', 'ivadomed')())
  File "/home/GRAMES.POLYMTL.CA/p101317/code/ivadomed/ivadomed/main.py", line 623, in run_main
    run_command(context=context,
  File "/home/GRAMES.POLYMTL.CA/p101317/code/ivadomed/ivadomed/main.py", line 457, in run_command
    best_training_dice, best_training_loss, best_validation_dice, best_validation_loss = imed_training.train(
  File "/home/GRAMES.POLYMTL.CA/p101317/code/ivadomed/ivadomed/training.py", line 304, in train
    writer.add_scalars('Validation/Metrics', metrics_dict, epoch)
  File "/home/GRAMES.POLYMTL.CA/p101317/.conda/envs/ivadomed/lib/python3.8/site-packages/torch/utils/tensorboard/writer.py", line 403, in add_scalars
    fw.add_summary(scalar(main_tag, scalar_value),
  File "/home/GRAMES.POLYMTL.CA/p101317/.conda/envs/ivadomed/lib/python3.8/site-packages/torch/utils/tensorboard/summary.py", line 249, in scalar
    scalar = make_np(scalar)
  File "/home/GRAMES.POLYMTL.CA/p101317/.conda/envs/ivadomed/lib/python3.8/site-packages/torch/utils/tensorboard/_convert_np.py", line 24, in make_np
    raise NotImplementedError(
NotImplementedError: Got <class 'NoneType'>, but numpy array, torch tensor, or caffe2 blob name are expected.
config file
{
    "command": "train",
    "gpu_ids": [
        5
    ],
    "path_output": "model_seg_lesion_mp2rage_20221220_112014",
    "model_name": "model_seg_lesion_mp2rage",
    "debugging": true,
    "log_file": "log",
    "object_detection_params": {
        "object_detection_path": null,
        "safety_factor": [
            1.0,
            1.0,
            1.0
        ],
        "gpu_ids": 5,
        "path_output": "model_seg_lesion_mp2rage_20221220_112014"
    },
    "wandb": {
        "wandb_api_key": "9095e2bc9e4ab445d478c9c8a81759ae908be8c6",
        "project_name": "basel-mp2rage-lesion",
        "group_name": "3D",
        "run_name": "run-1",
        "log_grads_every": 100
    },
    "loader_parameters": {
        "path_data": [
            "/home/GRAMES.POLYMTL.CA/p101317/data_nvme_p101317/data_seg_mp2rage_20221217_170634/data_processed_lesionseg"
        ],
        "subject_selection": {
            "n": [],
            "metadata": [],
            "value": []
        },
        "target_suffix": [
            "_lesion-manualHaris"
        ],
        "extensions": [
            ".nii.gz"
        ],
        "roi_params": {
            "suffix": null,
            "slice_filter_roi": null
        },
        "contrast_params": {
            "training_validation": [
                "UNIT1"
            ],
            "testing": [
                "UNIT1"
            ],
            "balance": {}
        },
        "slice_filter_params": {
            "filter_empty_mask": true,
            "filter_empty_input": true
        },
        "patch_filter_params": {
            "filter_empty_mask": false,
            "filter_empty_input": false
        },
        "slice_axis": "axial",
        "multichannel": false,
        "soft_gt": true,
        "is_input_dropout": false,
        "bids_validate": true
    },
    "split_dataset": {
        "fname_split": null,
        "random_seed": 42,
        "split_method": "participant_id",
        "data_testing": {
            "data_type": null,
            "data_value": []
        },
        "balance": null,
        "train_fraction": 0.6,
        "test_fraction": 0.2
    },
    "training_parameters": {
        "batch_size": 16,
        "loss": {
            "name": "AdapWingLoss"
        },
        "training_time": {
            "num_epochs": 50,
            "early_stopping_patience": 50,
            "early_stopping_epsilon": 0.001
        },
        "scheduler": {
            "initial_lr": 0.001,
            "lr_scheduler": {
                "name": "CosineAnnealingLR",
                "base_lr": 1e-05,
                "max_lr": 0.001
            }
        },
        "balance_samples": {
            "applied": false,
            "type": "gt"
        },
        "mixup_alpha": null,
        "transfer_learning": {
            "retrain_model": null,
            "retrain_fraction": 1.0,
            "reset": true
        }
    },
    "default_model": {
        "name": "Unet",
        "dropout_rate": 0.3,
        "bn_momentum": 0.1,
        "depth": 3,
        "is_2d": true,
        "final_activation": "relu"
    },
    "uncertainty": {
        "epistemic": false,
        "aleatoric": false,
        "n_it": 0
    },
    "postprocessing": {
        "remove_noise": {
            "thr": -1
        },
        "keep_largest": {},
        "binarize_prediction": {
            "thr": 0.5
        },
        "uncertainty": {
            "thr": -1,
            "suffix": "_unc-vox.nii.gz"
        },
        "fill_holes": {},
        "remove_small": {
            "unit": "vox",
            "thr": 3
        }
    },
    "evaluation_parameters": {
        "object_detection_metrics": true,
        "target_size": {
            "unit": "vox",
            "thr": [
                20,
                100
            ]
        },
        "overlap": {
            "unit": "vox",
            "thr": 3
        }
    },
    "transformation": {
        "Resample": {
            "hspace": 1,
            "wspace": 1,
            "dspace": 1
        },
        "RandomReverse": {
            "applied_to": [
                "im",
                "gt"
            ],
            "dataset_type": [
                "training"
            ]
        },
        "RandomAffine": {
            "degrees": 10,
            "scale": [
                0.2,
                0.2,
                0.2
            ],
            "translate": [
                0.2,
                0.2,
                0.2
            ],
            "applied_to": [
                "im",
                "gt"
            ],
            "dataset_type": [
                "training"
            ]
        },
        "CenterCrop": {
            "size": [
                32,
                32,
                128
            ]
        },
        "NormalizeInstance": {
            "applied_to": [
                "im"
            ]
        }
    },
    "FiLMedUnet": {
        "applied": false,
        "metadata": "contrasts",
        "film_layers": [
            0,
            1,
            0,
            0,
            0,
            0,
            0,
            0,
            0,
            0
        ]
    },
    "Modified3DUNet": {
        "applied": true,
        "length_3D": [
            32,
            32,
            32
        ],
        "stride_3D": [
            32,
            32,
            4
        ],
        "attention": false,
        "n_filters": 8
    },
    "training_sha256": {
        "sub-P173_UNIT1.nii.gz": "d7faf510ebc0f77d4bceb61c2fd1e37e7aaf4ea50f55e905ce4ccbaf8085ae2f",
        "sub-P057_UNIT1.nii.gz": "29ef9080c42db1979e976ef10fb72cb8e5b35f26f30980719c5efdb8e15997fc",
        "sub-P089_UNIT1.nii.gz": "383f3f135f6a4b9fb6c89d4316317f04db135d5add9ce64612f514dfeca3825d",
        "sub-P199_UNIT1.nii.gz": "2661ce225413dd659874a3aab63869a9c071e91628e68309c50a628b50a5c49a",
        "sub-P001_UNIT1.nii.gz": "275c4ddf275775fa011a44b03e481acc518b49a864d6f8c1d86f803c850009d4",
        "sub-P188_UNIT1.nii.gz": "b14c01f6a398edaced39afc4314dee4d90f974348ac3e43fcb145286df9e1612",
        "sub-P030_UNIT1.nii.gz": "de196f14aa686741ad4cb2e48f6898848bf6ba9bd5cdb61216f329a503190770",
        "sub-P022_UNIT1.nii.gz": "3033d6d6a7b64f0bda62671a2dd5aa8e1ed5690bab7d40bf653c0115416c6e56",
        "sub-P040_UNIT1.nii.gz": "df98742eb2ca7d2d0fce70f46b3bd6d3de15c2ba5d537bbebe36353bf90ff2a6",
        "sub-P063_UNIT1.nii.gz": "94b59476d65efb78c7e89edf905a0473863c662d0d8445c13e3711003ce69ab9",
        "sub-P183_UNIT1.nii.gz": "21817290c565177c048f3203b71a62efa9563c34ab953c11b7ef566a2a87cd5f",
        "sub-P068_UNIT1.nii.gz": "a88f72ad61a87c2c0e22276536e8ae2e531f835f2fab485712c4ec63def3d4aa",
        "sub-P153_UNIT1.nii.gz": "4dc6af0665ff2eefbf39958531b5f19b839b3adf86f55d07d90928a740529ac6",
        "sub-P081_UNIT1.nii.gz": "f52152f37ddb9ab69b43c0b42429003c1dd36355fa2f4c708901e45fed873b88",
        "sub-P003_UNIT1.nii.gz": "42b1e26a9ac14dcbf2b9efd0e13a0b9dec5b58aae5b8247aa03a9909bb5c8227",
        "sub-P179_UNIT1.nii.gz": "b1d2566e618553f90451bc8e9530260609c76a8a3d13f394f42eab4819165ba4",
        "sub-P110_UNIT1.nii.gz": "1f50c8e50fb1054c979e4e892cf0990177fa4d3fb9e5e50345621e7feef6fb3a",
        "sub-P035_UNIT1.nii.gz": "4cd4ccf42a2e1d86032115c929d3caf671cb6876509a41e5020cd0b58f48c924",
        "sub-P101_UNIT1.nii.gz": "2606d1fdf15259d6790c9b74259716c910cef7921c65572993d60b17e32c50e5",
        "sub-P095_UNIT1.nii.gz": "e201ab6c4498988170528213c104dfeb55e743b470178712da8a6d692e6d21b3",
        "sub-P133_UNIT1.nii.gz": "d356d78fb82e3e712a808eccb681a3f759985333e06fe6767b4006d4fe49006b",
        "sub-P029_UNIT1.nii.gz": "946f2dbf028bac08f02042751bf53bd301d452b6c7b6db0d89d8e67491b21777",
        "sub-P067_UNIT1.nii.gz": "b86783c8f475cad23b3f414aa6e163a97d533b72b5f251f719a988a5345b9c0e",
        "sub-P249_UNIT1.nii.gz": "9128cb1b4d47ea76005bc99422647a9a0be88da1415740f97a6819cde8621196",
        "sub-P080_UNIT1.nii.gz": "ce751c30ab5ea3f9c3f82eb79730c9131823f7325cea652c823f0ddaaa502d8c",
        "sub-P193_UNIT1.nii.gz": "871c200cce0c3b6105f6a6e9ca6e4bc129b1c1cf2a956e357a1e62b08fd276ea",
        "sub-P039_UNIT1.nii.gz": "1034813df5c641a83a0aaa3613f016ff3c50e66008394cd41cb09554fd282cbe",
        "sub-P162_UNIT1.nii.gz": "5ca25c14d41072811b35e3034c5b6ca13d5121649e56839883151a5a13936ee3",
        "sub-P048_UNIT1.nii.gz": "a9a20aa2723ae2503cb55d12204a29ba45f7a65770ac3645b34fa20b0ee5fb64",
        "sub-P200_UNIT1.nii.gz": "b80015c38d156bedb602b0f4ccdf58534378657cb6bc494796006d826e0b90c6",
        "sub-P123_UNIT1.nii.gz": "95d8a172b13fd640f47566f736f5060b5a341f9e89342d8a90155038612ac602",
        "sub-P012_UNIT1.nii.gz": "beac0203441d167b9fa513b1aa6fa62156743f55a6f4f3758cb80b6281f655b5",
        "sub-P074_UNIT1.nii.gz": "807ab79818f090b312b897c7b1ff2fca660006bb1586be907bd0c5dbcb0295ab",
        "sub-P092_UNIT1.nii.gz": "aa409241dbe1bcca90c843f42240aab275d90784b12841d0344932cd189f499b",
        "sub-P045_UNIT1.nii.gz": "e66e5ba2114de28c41dbbdc4e2e03f66eb8234267daee3075f47c7f3defd2ba7",
        "sub-P069_UNIT1.nii.gz": "425c5cf86a7accb6a6c447db8e4bbfac21b9b3586c87429df0654540ddf2ef64",
        "sub-P073_UNIT1.nii.gz": "6201cd9398560717e8395f087363fc59d84d0c796496a953f37cc68d17c06f8f",
        "sub-P097_UNIT1.nii.gz": "2492f8ed9c1cf2b1d9d187de53d9a16f36919615557ef0dcd419d643b97f05de",
        "sub-P185_UNIT1.nii.gz": "686e202f743e9b9e1a5a4305f37b3b3c88170cb6e72e915eaab971f7a3cfdcfc",
        "sub-P192_UNIT1.nii.gz": "f76121438526ff10ac1276b4a02746115eb5b48a37c0a22b68b8268eadd103d4",
        "sub-P007_UNIT1.nii.gz": "fdd254ccf7ae1c59debf1ff4978e25307a2aefb363fb44bb5f1528ea3545df9a",
        "sub-P117_UNIT1.nii.gz": "e85f4621ecfb2852b20d95fabc6ff3ea7fbf0748af0f3c065a0d210d635bd892",
        "sub-P176_UNIT1.nii.gz": "9ab90a46287cccb02834d564859307a09cb0aa7ac1b675a04124ead536a9d830",
        "sub-P050_UNIT1.nii.gz": "ca88ac95c80169df151a6db5c5eb6e660f568b6e0d1fddd4f078620e45331871",
        "sub-P141_UNIT1.nii.gz": "c4634fd7f7ff6c7a5bdf31068ecb9d4cb991d59e33510acfdbfcfef5afac46be",
        "sub-P144_UNIT1.nii.gz": "83a1e78105ab37d66e45025ae6264e90d7e7ee335dbc93371d785ea494dd6793",
        "sub-P024_UNIT1.nii.gz": "d9c4c29c1deb96a670948db8e2da063b005e0e30d51e2679ebaa49c42674a9fa",
        "sub-P163_UNIT1.nii.gz": "5cc52879f172e9f37865fa15f4d877b5a250649cb1126811a595701b1c5824f5",
        "sub-P051_UNIT1.nii.gz": "06d92792653132f348dd6f7becbf875c3eb13ee01b1b7583848bd069b2065cf4",
        "sub-P031_UNIT1.nii.gz": "20074cd10956ead4039413781bd0bdda0ff68bddd9c5a6d06e8fe8dcfeea4711",
        "sub-P161_UNIT1.nii.gz": "9e4a81c46c054bb39bf45b50671af45b7cb03f1028bac9ec368db3a19bd43d42",
        "sub-P042_UNIT1.nii.gz": "7022e4e9855b54b8850cef2b7c3249e4b786e18e30a3aba0d1b5eff7d9798cc0",
        "sub-P044_UNIT1.nii.gz": "28f17d374dea69d3a1c38db130a29909f594207178c760e02b33faa3b62871c8",
        "sub-P005_UNIT1.nii.gz": "dc3957affe67fc51fd09839c3e8f9bf7cd89d6ac70456fad4780f5b13edb1fd9",
        "sub-P078_UNIT1.nii.gz": "8f825e17e68f7a2f96b9290e94270d91d4a704adfa853152fb64a6a3830a4cc7",
        "sub-P105_UNIT1.nii.gz": "a37fffc33193437cbd28803ef295739186d7c8c2b8acc7b88b3a6e801b9396af",
        "sub-P149_UNIT1.nii.gz": "307bfafd210e120e69620677b7904b5821214ae26c7b3e87dd3aaba5a859adc4",
        "sub-P147_UNIT1.nii.gz": "5410e4e9f6886e38da86d5e0f01d5085eaa6c6546eec00a5dbc35d963221bb5b",
        "sub-P096_UNIT1.nii.gz": "ba296d68d8b94e0221f5b785d1afb1691af2fbaf9adfabdd21ff38f2e1400b39",
        "sub-P148_UNIT1.nii.gz": "7bc5464f6407072fcad6fb0f7a320b63bec54aa3ec6974eb311993642c574790",
        "sub-P241_UNIT1.nii.gz": "f224fd83c1d4612a3e070c8ea52a098850ab6e0b6c60e0654fbdcef0e4e1a07a",
        "sub-P187_UNIT1.nii.gz": "7af9f491f6aeead04829775c2fd4d17b2a52e7d88bfd5c0509464b4820066944",
        "sub-P049_UNIT1.nii.gz": "baa96097a131992d62a6bcb74d397607b7106694a2cb6560d9d536234b0912f1",
        "sub-P142_UNIT1.nii.gz": "e6b957fce9b91077e515b5935ff4fc53d8ae75bd917c07fbafc997d72dc44c6e",
        "sub-P052_UNIT1.nii.gz": "4019d9d6d8732e74863846feeb2df66a97d50caeeaf6fb68283cddc0381e2f7a",
        "sub-P055_UNIT1.nii.gz": "d33e55cb2361fab0fa4ddd85e23209004784db1b307cb69dee92fed3aedc5394",
        "sub-P243_UNIT1.nii.gz": "49cdc5011616019b3e72981685699bcf0666b584edc2e189b4a59d50ae2f45e7",
        "sub-P140_UNIT1.nii.gz": "5691e29530f45359cfb2b478ea0bcf528df81498edaf11d36011d52809e4df39",
        "sub-P021_UNIT1.nii.gz": "7a04b074dc304a83a12879e58092fa462d75d388fea0a7d9c3f672d962e9bf18",
        "sub-P104_UNIT1.nii.gz": "b4b50fd64c44c38ac0b1598b36cff22395b58e56306dd287561e91b252ded5b7",
        "sub-P124_UNIT1.nii.gz": "977bf31c8516eee05933daa2913d52cf2c634bd6351799386916029b1c505673",
        "sub-P138_UNIT1.nii.gz": "e1cc2ef1b61803a5aa633008dc11a84a93d9d4359fd5a0c2949f75de6c1beea2",
        "sub-P004_UNIT1.nii.gz": "7b9b6ac2376874cf5f80f4ce235c1388bcab3304422b2ded699e1c14732067c1",
        "sub-P085_UNIT1.nii.gz": "131655bdec44dfed232d3b345bde224f8786cf58df091a39ddf495bfc573d20e",
        "sub-P122_UNIT1.nii.gz": "c180696f478aec9bd48389b8e031fa0977d3bafbce46ce0015f4a4690817c7bf",
        "sub-P034_UNIT1.nii.gz": "1391480cbc5db75238395ad8bd8276b5cd301919c5087878805e1216da607705",
        "sub-P244_UNIT1.nii.gz": "a84e3d47896bd248a5a8ea92f8db1e137924278076fb25e6e67a48bc56d78bca",
        "sub-P151_UNIT1.nii.gz": "e13c0841add4ba4286411bb0faac384ecb7f8ecc17b89822289be95e7fb7a051",
        "sub-P134_UNIT1.nii.gz": "bf702ad78d674a6dd8e0557c4b2173c880666d898ce38afbd5d0c25e53095158",
        "sub-P194_UNIT1.nii.gz": "7b126553ac7d96c87c1207930d612f536031508b593d82efdd39a1ceb8d6c986",
        "sub-P182_UNIT1.nii.gz": "1e2dfcc6293faff4c8689ae7cf07dcf49b2a958ec84875a7bb145daae8f8275c",
        "sub-P010_UNIT1.nii.gz": "883743dd1d33c7aa4873cd01cfaa8c142660f4951661695a75e7da6030682fd4",
        "sub-P108_UNIT1.nii.gz": "4176a197454a48dbcbab5aff045828db750121d186da6fc31c924035edd271bb",
        "sub-P120_UNIT1.nii.gz": "b57bbfef8c1ffe3fa653ca096406ec74a112c43d0ae158ed18a0b0045ee9f8ec",
        "sub-P109_UNIT1.nii.gz": "78d47ae447d6d8963a833a481df09750163f35fd612742033aece096403e01e4",
        "sub-P116_UNIT1.nii.gz": "781d420cc3acbb8d1683a2e9f34fa83b9216e5b3fe39aab6dd71c45bb167bb58",
        "sub-P121_UNIT1.nii.gz": "177ccbff5a04d3c48f7e59c7d6d24f06340a8b8f1e681ac2d1054d34c64e1938",
        "sub-P072_UNIT1.nii.gz": "4932e5d4d1ec76b6b8d1dc622d9803abd5d8e235c84453502e8d004b83608ff5",
        "sub-P038_UNIT1.nii.gz": "c8dff094c06d7a2893a1fe585a5636f7836d9cceebfbc9a6c901f48b6370e0f0",
        "sub-P046_UNIT1.nii.gz": "8dbbbe33e810c8b3b3e29dfe763231ae5eb429383b095e4fd03cd298645606c3",
        "sub-P125_UNIT1.nii.gz": "dac49318d803625cfe2ec5fb29c3c5ca3623bb18b74d01d9e0cf50dbb512d6da",
        "sub-P084_UNIT1.nii.gz": "874e440642e9b4ac982bfafa10940f2a3698a0a7581ba41781b56778ea282186",
        "sub-P172_UNIT1.nii.gz": "242f5e4adaf85ad29c618dbdffee572c09a110eb1c83161db556c1eba030d1aa",
        "sub-P083_UNIT1.nii.gz": "3832285ebba279320e5c2186da045738caf69ff4c362dfa82bd4fe9fcca0b21f",
        "sub-P077_UNIT1.nii.gz": "8153218e02140d8384962dec49f0ee0ad28f387cb14aff7ab45a444375a0da60",
        "sub-P011_UNIT1.nii.gz": "ab1a746ba5d751445fd67a583cdf869ab014db13ef287d99a47a762e20fc6f34",
        "sub-P113_UNIT1.nii.gz": "0c0f493ec6376a07d87c2f1df6f81578695e81c8e646223408c31c1f570deede",
        "sub-P102_UNIT1.nii.gz": "d08509029f5d2900bd193f194491d1989bffb904d75a55f63097e4ea588904f0",
        "sub-P062_UNIT1.nii.gz": "0b2baceb4a2df76b3d579a5d075343904fbc41eb1ebbb7a1c3c34fab4cf26a48",
        "sub-P053_UNIT1.nii.gz": "6de0ffd47e6722fa582ead289478a14d89510a3bca18c36cfa44ca544e99d277",
        "sub-P126_UNIT1.nii.gz": "01071bef694b7cb8098cde73c8e9db5eac6d86cd6bbbfbac8db2ccc5c555387b",
        "sub-P019_UNIT1.nii.gz": "bd00a5592ae1158d7ef349f5fa4739e1e16f03538daee6a64d54a41e745200df",
        "sub-P033_UNIT1.nii.gz": "d0005f04e4670aaa20b5f8935e849879bb5ef61615af6f4e3e75f9c1ef62e80d",
        "sub-P159_UNIT1.nii.gz": "c1c565501a0252c5810a9081329d7c4c1240404fab6ecd4c2b17b9e22c5b274b",
        "sub-P197_UNIT1.nii.gz": "7cab9ed02bb185b014dc8c000372b7011afef2a223e282b58e2928930b203e8b",
        "sub-P169_UNIT1.nii.gz": "aae51a60ea1856d11f1b5a024d35d71c87bef882b2b763c4593cd85fce5ec763"
    }
}

Issue Analytics

  • State:open
  • Created 9 months ago
  • Comments:12 (12 by maintainers)

github_iconTop GitHub Comments

2reactions
mariehbourgetcommented, Dec 20, 2022

So my suggestion would be to output a more informative warning/error when that happens.

Yes, and that also seems like a good argument to revive the patch filter for 3D subvolumes in #1164. I can continue to investigate tomorrow.

1reaction
mariehbourgetcommented, Dec 20, 2022

Error happened with empty 3D patches, maybe related?

Yes I think so. Just before the error I get this warning which point to an empty patch:

/home/mhbourget/code/ivadomed/ivadomed/transforms.py:304: RuntimeWarning: invalid value encountered in divide
  data_out = (sample - sample.mean()) / sample.std()

But then, the error itself comes from tensorboard:

/home/mhbourget/venv-ivadomed-296/lib/python3.8/site-packages/torch/utils/tensorboard/summary.py:400: RuntimeWarning: invalid value encountered in cast
  tensor = (tensor * scale_factor).astype(np.uint8)
Training:  26%|██████████████████████████████████████████▋                                                                                                                         | 13/50 [04:16<13:11, 21.39s/it]
Traceback (most recent call last):
  File "/home/mhbourget/venv-ivadomed-296/bin/ivadomed", line 11, in <module>
    load_entry_point('ivadomed', 'console_scripts', 'ivadomed')()
  File "/home/mhbourget/code/ivadomed/ivadomed/main.py", line 623, in run_main
    run_command(context=context,
  File "/home/mhbourget/code/ivadomed/ivadomed/main.py", line 457, in run_command
    best_training_dice, best_training_loss, best_validation_dice, best_validation_loss = imed_training.train(
  File "/home/mhbourget/code/ivadomed/ivadomed/training.py", line 304, in train
    writer.add_scalars('Validation/Metrics', metrics_dict, epoch)
  File "/home/mhbourget/venv-ivadomed-296/lib/python3.8/site-packages/torch/utils/tensorboard/writer.py", line 403, in add_scalars
    fw.add_summary(scalar(main_tag, scalar_value),
  File "/home/mhbourget/venv-ivadomed-296/lib/python3.8/site-packages/torch/utils/tensorboard/summary.py", line 249, in scalar
    scalar = make_np(scalar)
  File "/home/mhbourget/venv-ivadomed-296/lib/python3.8/site-packages/torch/utils/tensorboard/_convert_np.py", line 24, in make_np
    raise NotImplementedError(
NotImplementedError: Got <class 'NoneType'>, but numpy array, torch tensor, or caffe2 blob name are expected.
Read more comments on GitHub >

github_iconTop Results From Across the Web

Got <class 'NoneType'>, but numpy array, torch tensor, or ...
NotImplementedError: Got <class 'NoneType'>, but numpy array, torch tensor, or caffe2 blob name are expected. #140.
Read more >
Conversion error at validation step - PyTorch Forums
NotImplementedError : Got <class 'torch.nn.modules.loss.MSELoss'>, but numpy array, torch tensor, or caffe2 blob name are expected.
Read more >
pic should be Tensor or ndarray. Got <class 'NoneType'>
I want to train a network using NYU dataset, but I am getting an error. enter image description here. The error happens while...
Read more >
Got <class '__main__.AverageMeter'>, but expected numpy ...
format(type(x))) NotImplementedError: Got <class '__main__.AverageMeter'>, but expected numpy array or torch tensor.
Read more >
Pytorch里用tensorboard将两条曲线画在一张图里面(报错
NotImplementedError : Got <class 'dict'>, but numpy array, torch tensor, or caffe2 blob name are expected. 运行截图
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found