why the training loss always none?
See original GitHub issueI got some loss like this:
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 424/424 [04:10<00:00, 2.24it/s]
[train] Epoch: 22/100 Loss: nan Acc: 0.010870849580527
Execution time: 250.25667172999238
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 108/108 [00:26<00:00, 5.16it/s]
[val] Epoch: 22/100 Loss: nan Acc: 0.011121408711770158
Execution time: 26.448329468010343
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 424/424 [04:09<00:00, 2.23it/s]
[train] Epoch: 23/100 Loss: nan Acc: 0.010870849580527
Execution time: 249.90277546200377
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 108/108 [00:26<00:00, 5.09it/s]
[val] Epoch: 23/100 Loss: nan Acc: 0.011121408711770158
Execution time: 26.87914375399123
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 424/424 [04:09<00:00, 2.24it/s]
[train] Epoch: 24/100 Loss: nan Acc: 0.010870849580527
Execution time: 249.9237438449927
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 108/108 [00:26<00:00, 5.16it/s]
[val] Epoch: 24/100 Loss: nan Acc: 0.011121408711770158
Execution time: 26.460865497996565
It;s all nan, for what reason maybe?
Issue Analytics
- State:
- Created 5 years ago
- Reactions:1
- Comments:14 (1 by maintainers)
Top Results From Across the Web
why training and validation loss are always zero during the ...
During training, Train loss and validation loss are always zero. I don't know why? If anyone know the problem, please let me know...
Read more >Why is my validation loss lower than my training loss?
Reason #2: Training loss is measured during each epoch while validation loss is measured after each epoch.
Read more >What may be the reason for loss can not go further down when ...
I suggest you first try to train your model until it overfits. From what I can see, your model is still learning or...
Read more >What should I do when my neural network doesn't learn?
The only way the NN can learn now is by memorising the training set, which means that the training loss will decrease very...
Read more >When to Stop Training your Deep Learning Model
Although validation loss is a widely used metric when applying early stopping to your model, it is not always the most relevant.
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Reducing learning rate means selecting a rate lower than 1e-3, such as 1e-5 or 0.5e-3. Personally I trained the model from scratch on UCF101 with learning rate equal to 1e-3, without having any NaN issues.
maybe we didn’t use pretrain model, but i am not sure