Cannot even make the demo work...help...
See original GitHub issueI am pretty disappointed in myself. Appologies for my stupid question in advance. I am pretty new to all these detection stuff and pytorch thing.
I went through the way that you explained to run the demo. I guess i have everything set as you said. I have a data folder, inside of it i have two folders (pretrained_model and VOCdevkit2007). the VOCdevkit2007 is created via softlink. In the pretrained_model folder I have resnet101_caffe.pth and vgg16_caffe.pth.
I am trying to run the demo to run it on the images that you provided on the images folder. So I am going to run this command:
python demo.py --net vgg16 \ --checksession $SESSION --checkepoch $EPOCH --checkpoint $CHECKPOINT \ --cuda --load_dir path/to/model/directoy
and i run it like this:
python demo.py --net vgg16 \ --checksession 1 --checkepoch 6 --checkpoint 416 \ --cuda --load_dir /data/pretrained_model/vgg16_caffe.pth
am i doing anything wrong so far? This is what happened and it is not working:
Namespace(batch_size=1, cfg_file='cfgs/vgg16.yml', checkepoch=6, checkpoint=416, checksession=1, class_agnostic=False, cuda=True, dataset='pascal_voc', image_dir='images', load_dir='/data/pretrained_model/vgg16_caffe.pth', mGPUs=False, net='vgg16', parallel_type=0, set_cfgs=None, vis=False, webcam_num=-1)
Using config:
{'ANCHOR_RATIOS': [0.5, 1, 2],
'ANCHOR_SCALES': [8, 16, 32],
'CROP_RESIZE_WITH_MAX_POOL': False,
'CUDA': False,
'DATA_DIR': '/home/alireza/Desktop/Code/VID/FRCNN2/faster-rcnn.pytorch/data',
'DEDUP_BOXES': 0.0625,
'EPS': 1e-14,
'EXP_DIR': 'vgg16',
'FEAT_STRIDE': [16],
'GPU_ID': 0,
'MATLAB': 'matlab',
'MAX_NUM_GT_BOXES': 20,
'MOBILENET': {'DEPTH_MULTIPLIER': 1.0,
'FIXED_LAYERS': 5,
'REGU_DEPTH': False,
'WEIGHT_DECAY': 4e-05},
'PIXEL_MEANS': array([[[102.9801, 115.9465, 122.7717]]]),
'POOLING_MODE': 'align',
'POOLING_SIZE': 7,
'RESNET': {'FIXED_BLOCKS': 1, 'MAX_POOL': False},
'RNG_SEED': 3,
'ROOT_DIR': '/home/alireza/Desktop/Code/VID/FRCNN2/faster-rcnn.pytorch',
'TEST': {'BBOX_REG': True,
'HAS_RPN': True,
'MAX_SIZE': 1000,
'MODE': 'nms',
'NMS': 0.3,
'PROPOSAL_METHOD': 'gt',
'RPN_MIN_SIZE': 16,
'RPN_NMS_THRESH': 0.7,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'RPN_TOP_N': 5000,
'SCALES': [600],
'SVM': False},
'TRAIN': {'ASPECT_GROUPING': False,
'BATCH_SIZE': 256,
'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0],
'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2],
'BBOX_NORMALIZE_TARGETS': True,
'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': True,
'BBOX_REG': True,
'BBOX_THRESH': 0.5,
'BG_THRESH_HI': 0.5,
'BG_THRESH_LO': 0.0,
'BIAS_DECAY': False,
'BN_TRAIN': False,
'DISPLAY': 10,
'DOUBLE_BIAS': True,
'FG_FRACTION': 0.25,
'FG_THRESH': 0.5,
'GAMMA': 0.1,
'HAS_RPN': True,
'IMS_PER_BATCH': 1,
'LEARNING_RATE': 0.01,
'MAX_SIZE': 1000,
'MOMENTUM': 0.9,
'PROPOSAL_METHOD': 'gt',
'RPN_BATCHSIZE': 256,
'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'RPN_CLOBBER_POSITIVES': False,
'RPN_FG_FRACTION': 0.5,
'RPN_MIN_SIZE': 8,
'RPN_NEGATIVE_OVERLAP': 0.3,
'RPN_NMS_THRESH': 0.7,
'RPN_POSITIVE_OVERLAP': 0.7,
'RPN_POSITIVE_WEIGHT': -1.0,
'RPN_POST_NMS_TOP_N': 2000,
'RPN_PRE_NMS_TOP_N': 12000,
'SCALES': [600],
'SNAPSHOT_ITERS': 5000,
'SNAPSHOT_KEPT': 3,
'SNAPSHOT_PREFIX': 'res101_faster_rcnn',
'STEPSIZE': [30000],
'SUMMARY_INTERVAL': 180,
'TRIM_HEIGHT': 600,
'TRIM_WIDTH': 600,
'TRUNCATED': False,
'USE_ALL_GT': True,
'USE_FLIPPED': True,
'USE_GT': False,
'WEIGHT_DECAY': 0.0005},
'USE_GPU_NMS': True}
Traceback (most recent call last):
File "demo.py", line 163, in <module>
raise Exception('There is no input directory for loading network from ' + input_dir)
Exception: There is no input directory for loading network from /data/pretrained_model/vgg16_caffe.pth/vgg16/pascal_voc
Can anyone please help me … Thanks
Issue Analytics
- State:
- Created 5 years ago
- Comments:6
Top GitHub Comments
These models are pre-trained on ImageNet images for classification only. So you use them as the backbone for faster-rcnn which is an object detection architecture that can use many different underlying CNNs. Faster-RCNN itself has to be trained by you now for object detection.
@cbasavaraj Thank you for your help. I will try google cloud. but in the repository what they mean when they said:
what are these pretrained model useful for?