Tensor' object has no attribute 'index
See original GitHub issuepython version: anaconda3/python 3.6
PyTorch Version: 0.4.1
Torchvision Version: 0.2.1
Linux 18.04
marvin@marvin:~/Code/Pytorch/faster-rcnn.pytorch$ python trainval_net.py --cuda
Called with args:
Namespace(batch_size=1, checkepoch=1, checkpoint=0, checkpoint_interval=10000, checksession=1, class_agnostic=False, cuda=True, dataset=‘pascal_voc’, disp_interval=100, large_scale=False, lr=0.001, lr_decay_gamma=0.1, lr_decay_step=5, mGPUs=False, max_epochs=1, net=‘vgg16’, num_workers=1, optimizer=‘sgd’, resume=False, save_dir=‘data/pretrained_model’, session=1, start_epoch=1, use_tfboard=False)
Using config:
{‘ANCHOR_RATIOS’: [0.5, 1, 2],
‘ANCHOR_SCALES’: [8, 16, 32],
‘CROP_RESIZE_WITH_MAX_POOL’: False,
‘CUDA’: False,
‘DATA_DIR’: ‘/home/marvin/Code/Pytorch/faster-rcnn.pytorch/data’,
‘DEDUP_BOXES’: 0.0625,
‘EPS’: 1e-14,
‘EXP_DIR’: ‘vgg16’,
‘FEAT_STRIDE’: [16],
‘GPU_ID’: 0,
‘MATLAB’: ‘matlab’,
‘MAX_NUM_GT_BOXES’: 20,
‘MOBILENET’: {‘DEPTH_MULTIPLIER’: 1.0,
‘FIXED_LAYERS’: 5,
‘REGU_DEPTH’: False,
‘WEIGHT_DECAY’: 4e-05},
‘PIXEL_MEANS’: array([[[102.9801, 115.9465, 122.7717]]]),
‘POOLING_MODE’: ‘align’,
‘POOLING_SIZE’: 7,
‘RESNET’: {‘FIXED_BLOCKS’: 1, ‘MAX_POOL’: False},
‘RNG_SEED’: 3,
‘ROOT_DIR’: ‘/home/marvin/Code/Pytorch/faster-rcnn.pytorch’,
‘TEST’: {‘BBOX_REG’: True,
‘HAS_RPN’: True,
‘MAX_SIZE’: 1000,
‘MODE’: ‘nms’,
‘NMS’: 0.3,
‘PROPOSAL_METHOD’: ‘gt’,
‘RPN_MIN_SIZE’: 16,
‘RPN_NMS_THRESH’: 0.7,
‘RPN_POST_NMS_TOP_N’: 300,
‘RPN_PRE_NMS_TOP_N’: 6000,
‘RPN_TOP_N’: 5000,
‘SCALES’: [600],
‘SVM’: False},
‘TRAIN’: {‘ASPECT_GROUPING’: False,
‘BATCH_SIZE’: 256,
‘BBOX_INSIDE_WEIGHTS’: [1.0, 1.0, 1.0, 1.0],
‘BBOX_NORMALIZE_MEANS’: [0.0, 0.0, 0.0, 0.0],
‘BBOX_NORMALIZE_STDS’: [0.1, 0.1, 0.2, 0.2],
‘BBOX_NORMALIZE_TARGETS’: True,
‘BBOX_NORMALIZE_TARGETS_PRECOMPUTED’: True,
‘BBOX_REG’: True,
‘BBOX_THRESH’: 0.5,
‘BG_THRESH_HI’: 0.5,
‘BG_THRESH_LO’: 0.0,
‘BIAS_DECAY’: False,
‘BN_TRAIN’: False,
‘DISPLAY’: 10,
‘DOUBLE_BIAS’: True,
‘FG_FRACTION’: 0.25,
‘FG_THRESH’: 0.5,
‘GAMMA’: 0.1,
‘HAS_RPN’: True,
‘IMS_PER_BATCH’: 1,
‘LEARNING_RATE’: 0.01,
‘MAX_SIZE’: 1000,
‘MOMENTUM’: 0.9,
‘PROPOSAL_METHOD’: ‘gt’,
‘RPN_BATCHSIZE’: 256,
‘RPN_BBOX_INSIDE_WEIGHTS’: [1.0, 1.0, 1.0, 1.0],
‘RPN_CLOBBER_POSITIVES’: False,
‘RPN_FG_FRACTION’: 0.5,
‘RPN_MIN_SIZE’: 8,
‘RPN_NEGATIVE_OVERLAP’: 0.3,
‘RPN_NMS_THRESH’: 0.7,
‘RPN_POSITIVE_OVERLAP’: 0.7,
‘RPN_POSITIVE_WEIGHT’: -1.0,
‘RPN_POST_NMS_TOP_N’: 2000,
‘RPN_PRE_NMS_TOP_N’: 12000,
‘SCALES’: [600],
‘SNAPSHOT_ITERS’: 5000,
‘SNAPSHOT_KEPT’: 3,
‘SNAPSHOT_PREFIX’: ‘res101_faster_rcnn’,
‘STEPSIZE’: [30000],
‘SUMMARY_INTERVAL’: 180,
‘TRIM_HEIGHT’: 600,
‘TRIM_WIDTH’: 600,
‘TRUNCATED’: False,
‘USE_ALL_GT’: True,
‘USE_FLIPPED’: True,
‘USE_GT’: False,
‘WEIGHT_DECAY’: 0.0005},
‘USE_GPU_NMS’: True}
Loaded dataset voc_2007_trainval
for training
Set proposal method: gt
Appending horizontally-flipped training examples…
voc_2007_trainval gt roidb loaded from /home/marvin/Code/Pytorch/faster-rcnn.pytorch/data/cache/voc_2007_trainval_gt_roidb.pkl
done
Preparing training data…
done
before filtering, there are 10022 images…
after filtering, there are 10022 images…
10022 roidb entries
Loading pretrained weights from data/pretrained_model/vgg16_caffe.pth
Traceback (most recent call last):
File “trainval_net.py”, line 320, in <module>
rois_label = fasterRCNN(im_data, im_info, gt_boxes, num_boxes)
File “/home/marvin/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py”, line 477, in call
result = self.forward(*input, **kwargs)
File “/home/marvin/Code/Pytorch/faster-rcnn.pytorch/lib/model/faster_rcnn/faster_rcnn.py”, line 54, in forward
roi_data = self.RCNN_proposal_target(rois, gt_boxes, num_boxes)
File “/home/marvin/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py”, line 477, in call
result = self.forward(*input, **kwargs)
File “/home/marvin/Code/Pytorch/faster-rcnn.pytorch/lib/model/rpn/proposal_target_layer_cascade.py”, line 52, in forward
rois_per_image, self._num_classes)
File “/home/marvin/Code/Pytorch/faster-rcnn.pytorch/lib/model/rpn/proposal_target_layer_cascade.py”, line 133, in _sample_rois_pytorch
labels = gt_boxes[:,:,4].contiguous().view(-1).index(offset.view(-1)).view(batch_size, -1)
AttributeError: ‘Tensor’ object has no attribute ‘index’
Is there anyone know how to fix this?
Issue Analytics
- State:
- Created 5 years ago
- Reactions:1
- Comments:5 (1 by maintainers)
Top GitHub Comments
fixed with the following code: labels = gt_boxes[:,:,4].contiguous().view(-1)[(offset.view(-1),)].view(batch_size, -1) Thanks @ahmed-shariff #289
@charulatalodha have you looked at torchvisions models?