StableDiffusion Tensorflow to TF Lite
See original GitHub issueHi @LukeWood,
For fun, I tried converting stable Diffusion model from Tensorflow to TF lite, so that I can run it on coral/edge tpu.
I tried two approaches: I- Saved model approach: II- Go through h5
will try to document them as much as possible. (sorry in advance for the long traces)
for both:
!pip install git+https://github.com/divamgupta/stable-diffusion-tensorflow --upgrade
!pip install tensorflow tensorflow_addons ftfy --upgrade
Using !pip install --upgrade keras-cv
I was not able to save the model for both.
I- Saved model approach:
- Saved the model in a directory
from stable_diffusion_tf.stable_diffusion import StableDiffusion
model = StableDiffusion(
img_height=512,
img_width=512,
)
model.diffusion_model.save('/saved_model')
- lets try to load it:
import tensorflow as tf
model2 = tf.keras.models.load_model('/saved_model')
converter = tf.lite.TFLiteConverter.from_keras_model(model2)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
- The following error is thrown:
WARNING:tensorflow:No training configuration found in save file, so the model was *not* compiled. Compile it manually.
WARNING:absl:Found untraced functions such as dense_328_layer_call_fn, dense_328_layer_call_and_return_conditional_losses, dense_329_layer_call_fn, dense_329_layer_call_and_return_conditional_losses, group_normalization_173_layer_call_fn while saving (showing 5 of 1200). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: /tmp/tmpicdc9dmk/assets
INFO:tensorflow:Assets written to: /tmp/tmpicdc9dmk/assets
---------------------------------------------------------------------------
ConverterError Traceback (most recent call last)
<ipython-input-15-52d23a3e5390> in <module>
2 model2 = tf.keras.models.load_model('mydata/ivo/pythalpha/saved_model')
3 converter = tf.lite.TFLiteConverter.from_keras_model(model2)
----> 4 tflite_model = converter.convert()
5 open("converted_model.tflite", "wb").write(tflite_model)
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/lite.py in wrapper(self, *args, **kwargs)
931 def wrapper(self, *args, **kwargs):
932 # pylint: disable=protected-access
--> 933 return self._convert_and_export_metrics(convert_func, *args, **kwargs)
934 # pylint: enable=protected-access
935
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/lite.py in _convert_and_export_metrics(self, convert_func, *args, **kwargs)
909 self._save_conversion_params_metric()
910 start_time = time.process_time()
--> 911 result = convert_func(self, *args, **kwargs)
912 elapsed_time_ms = (time.process_time() - start_time) * 1000
913 if result:
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/lite.py in convert(self)
1340 Invalid quantization parameters.
1341 """
-> 1342 saved_model_convert_result = self._convert_as_saved_model()
1343 if saved_model_convert_result:
1344 return saved_model_convert_result
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/lite.py in _convert_as_saved_model(self)
1322 self._convert_keras_to_saved_model(temp_dir))
1323 if self.saved_model_dir:
-> 1324 return super(TFLiteKerasModelConverterV2,
1325 self).convert(graph_def, input_tensors, output_tensors)
1326 finally:
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/lite.py in convert(self, graph_def, input_tensors, output_tensors)
1133
1134 # Converts model.
-> 1135 result = _convert_graphdef(
1136 input_data=graph_def,
1137 input_tensors=input_tensors,
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/convert_phase.py in wrapper(*args, **kwargs)
210 else:
211 report_error_message(str(converter_error))
--> 212 raise converter_error from None # Re-throws the exception.
213 except Exception as error:
214 report_error_message(str(error))
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/convert_phase.py in wrapper(*args, **kwargs)
203 def wrapper(*args, **kwargs):
204 try:
--> 205 return func(*args, **kwargs)
206 except ConverterError as converter_error:
207 if converter_error.errors:
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/convert.py in convert_graphdef(input_data, input_tensors, output_tensors, **kwargs)
791 model_flags.output_arrays.append(util.get_tensor_name(output_tensor))
792
--> 793 data = convert(
794 model_flags.SerializeToString(),
795 conversion_flags.SerializeToString(),
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/convert.py in convert(model_flags_str, conversion_flags_str, input_data_str, debug_info_str, enable_mlir_converter)
308 for error_data in _metrics_wrapper.retrieve_collected_errors():
309 converter_error.append_error(error_data)
--> 310 raise converter_error
311
312 return _run_deprecated_conversion_binary(model_flags_str,
ConverterError: /opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
<unknown>:0: error: failed while converting: 'main':
Some ops are not supported by the native TFLite runtime, you can enable TF kernels fallback using TF Select. See instructions: https://www.tensorflow.org/lite/guide/ops_select
TF Select ops: Conv2D
Details:
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<1x1x1280x1280xf32>) -> (tensor<?x?x?x1280xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<1x1x320x320xf32>) -> (tensor<?x?x?x320xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<1x1x640x640xf32>) -> (tensor<?x?x?x640xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x1280x1280xf32>) -> (tensor<?x?x?x1280xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x1280x640xf32>) -> (tensor<?x?x?x640xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x1920x1280xf32>) -> (tensor<?x?x?x1280xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x1920x640xf32>) -> (tensor<?x?x?x640xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x2560x1280xf32>) -> (tensor<?x?x?x1280xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x320x320xf32>) -> (tensor<?x?x?x320xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x320x4xf32>) -> (tensor<?x?x?x4xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x320x640xf32>) -> (tensor<?x?x?x640xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x640x1280xf32>) -> (tensor<?x?x?x1280xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x640x320xf32>) -> (tensor<?x?x?x320xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x640x640xf32>) -> (tensor<?x?x?x640xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x960x320xf32>) -> (tensor<?x?x?x320xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x960x640xf32>) -> (tensor<?x?x?x640xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
II- Go through h5
- Save the model with format
h5
from stable_diffusion_tf.stable_diffusion import StableDiffusion
model = StableDiffusion(
img_height=512,
img_width=512,
)
model.diffusion_model.save('./stable_diffusion.h5', save_format='h5')
- Lets try to load it
import tensorflow as tf
model2 = tf.keras.models.load_model('stable_diffusion.h5')
converter = tf.lite.TFLiteConverter.from_keras_model(model2)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
- It seems that the
TF 2.11.0
does not load h5 files anymore.
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
[<ipython-input-3-72d9a214a713>](https://localhost:8080/#) in <module>
1 import tensorflow as tf
2
----> 3 model2 = tf.keras.models.load_model('stable_diffusion.h5')
4 converter = tf.lite.TFLiteConverter.from_keras_model(model2)
5 tflite_model = converter.convert()
1 frames
[/usr/local/lib/python3.7/dist-packages/keras/saving/legacy/serialization.py](https://localhost:8080/#) in class_and_config_for_serialized_keras_object(config, module_objects, custom_objects, printable_module_name)
384 if cls is None:
385 raise ValueError(
--> 386 f"Unknown {printable_module_name}: '{class_name}'. "
387 "Please ensure you are using a `keras.utils.custom_object_scope` "
388 "and that this object is included in the scope. See "
ValueError: Unknown layer: 'UNetModel'. Please ensure you are using a `keras.utils.custom_object_scope` and that this object is included in the scope. See https://www.tensorflow.org/guide/keras/save_and_serialize#registering_the_custom_object for details.
- Therefore, uninstall
tf 2.11.0
and install tf2.1.0
- Attempt to load the saved h5 file:
import tensorflow as tf
model2 = tf.keras.models.load_model('stable_diffusion.h5')
converter = tf.lite.TFLiteConverter.from_keras_model(model2)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
The load_model
throws the following error:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-5-72d9a214a713> in <module>
1 import tensorflow as tf
2
----> 3 model2 = tf.keras.models.load_model('stable_diffusion.h5')
4 converter = tf.lite.TFLiteConverter.from_keras_model(model2)
5 tflite_model = converter.convert()
1 frames
/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/keras/saving/hdf5_format.py in load_model_from_hdf5(filepath, custom_objects, compile)
164 if model_config is None:
165 raise ValueError('No model found in config file.')
--> 166 model_config = json.loads(model_config.decode('utf-8'))
167 model = model_config_lib.model_from_config(model_config,
168 custom_objects=custom_objects)
AttributeError: 'str' object has no attribute 'decode'
Issue Analytics
- State:
- Created 10 months ago
- Reactions:2
- Comments:38 (18 by maintainers)
Top Results From Across the Web
Stable Diffusion Tensorflow to TF Lite : r/StableDiffusion - Reddit
Hi, Checking here is someone tried to convert the tensorflow diffusion model into a tf lite?…
Read more >High-performance image generation using Stable Diffusion in ...
Generate new images using KerasCV's StableDiffusion model. View on TensorFlow.org · Run in Google Colab · View source on GitHub · View on...
Read more >divamgupta/stable-diffusion-tensorflow - TF Lite convert error
It appears that the problem is related to KerasCV's implementation because they are using their own implementation of the GroupNormalization layer, which is ......
Read more >Anyone attempted to convert stablediffusion tensorflow to tf lite?
was curious if someone attempted the conversion? I tried here github.com/divamgupta/stable-diffusion-tensorflow/issues/58 but having some ...
Read more >How to Run TensorFlow Lite Models on Raspberry Pi
In this tutorial we'll see how to run TensorFlow Lite on Raspberry Pi. We'll use the TFLite version of MobileNet for making predictions...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
@charbull FYR. I gave a try.
ideally, if we feed input tensors with correct ranges, we should be able to get quantized model. if that works, we can extend the
representative_data_gen()
.unfortunately, I got the following message. Dunno how to solve it yet.
Thanks @charbull for the report! Will take a look at this. TFLite conversion would be an awesome addition.