tf.keras.callbacks.ModelCheckpoint Type Error : Unable to serialize 1.0000000656873453e-05 to JSON
See original GitHub issueI am creating my custom layers tf.keras model using the mobile net pre-trained layer. Model training is running fine but when saving the best-picked model it is giving an error. Below is the snippet of the code that I used
pretrained_model = tf.keras.applications.MobileNetV2(
weights='imagenet',
include_top=False,
input_shape=[*IMAGE_SIZE, IMG_CHANNELS])
pretrained_model.trainable = True #fine tuning
model = tf.keras.Sequential([
tf.keras.layers.Lambda(# Convert image from int[0, 255] to the format expect by this model
lambda data:tf.keras.applications.mobilenet.preprocess_input(
tf.cast(data, tf.float32)), input_shape=[*IMAGE_SIZE, 3]),
pretrained_model,
tf.keras.layers.GlobalAveragePooling2D()])
model.add(tf.keras.layers.Dense(64, name='object_dense',kernel_regularizer=tf.keras.regularizers.l2(l2=0.001)))
model.add(tf.keras.layers.BatchNormalization(scale=False, center = False))
model.add(tf.keras.layers.Activation('relu', name='relu_dense_64'))
model.add(tf.keras.layers.Dropout(rate=0.2, name='dropout_dense_64'))
model.add(tf.keras.layers.Dense(32, name='object_dense_2',kernel_regularizer=tf.keras.regularizers.l2(l2=0.01)))
model.add(tf.keras.layers.BatchNormalization(scale=False, center = False))
model.add(tf.keras.layers.Activation('relu', name='relu_dense_32'))
model.add(tf.keras.layers.Dropout(rate=0.2, name='dropout_dense_32'))
model.add(tf.keras.layers.Dense(16, name='object_dense_16', kernel_regularizer=tf.keras.regularizers.l2(l2=0.01)))
model.add(tf.keras.layers.Dense(len(CLASS_NAMES), activation='softmax', name='object_prob'))
m1 = tf.keras.metrics.CategoricalAccuracy()
m2 = tf.keras.metrics.Recall()
m3 = tf.keras.metrics.Precision()
optimizers = [
tfa.optimizers.AdamW(learning_rate=lr * .001 , weight_decay=wd),
tfa.optimizers.AdamW(learning_rate=lr, weight_decay=wd)
]
optimizers_and_layers = [(optimizers[0], model.layers[0]), (optimizers[1], model.layers[1:])]
optimizer = tfa.optimizers.MultiOptimizer(optimizers_and_layers)
model.compile(
optimizer= optimizer,
loss = 'categorical_crossentropy',
metrics=[m1, m2, m3],
)
checkpoint_path = os.getcwd() + os.sep + 'keras_model'
checkpoint_cb = tf.keras.callbacks.ModelCheckpoint(filepath=os.path.join(checkpoint_path),
monitor = 'categorical_accuracy',
save_best_only=True,
save_weights_only=False)
history = model.fit(train_data, validation_data=test_data, epochs=N_EPOCHS, callbacks=[checkpoint_cb])
At tf.keras.callbacks.ModelCheckpoint is giving me an error
TypeError: Unable to serialize 1.0000000656873453e-05 to JSON. Unrecognized type <class ‘tensorflow.python.framework.ops.EagerTensor’>.
I am using tensorflow 2.7
Issue Analytics
- State:
- Created 2 years ago
- Comments:13 (3 by maintainers)
Top Results From Across the Web
No results found
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Correct.
Sure, but I have no time to reproduce the error recently. If I want to provide full stack trace just put following code at the beginning right?