Further optimize the disk usage
See original GitHub issueI’m conducting a Hyperparameter search on large parameter space using Hyperband. Im experiencing Diskspace issues (+700GB), because of all the save Trails. I would like to delete discarded Trails, which have been discarded by successive halving.
How can I lookup discarded trails that will not be used in futer trails?
Which trails are safe for me to delete. Is it safe to delete all trails that are listed in “past_id” in the Brackets, which can be found in self.oracle.get_state()
(see example below)?
Thanks alot! Great Repo!
Example: This is a current state of a small Hyperparameter space after serveral trails:
{
"brackets": [
{
"bracket_num": 2,
"rounds": [
[
{
"id": "e1822fa866ee7b337a6ce32e154a81e7",
"past_id": null
},
{
"id": "a83404db6388d841da8adfffe6c574d6",
"past_id": null
},
{
"id": "7b35e7e6e19a6cb906ff0ec4dd00b0d7",
"past_id": null
},
{
"id": "4bcb8b7e9e868f2c29b5205c8ece21f6",
"past_id": null
},
{
"id": "e32d7a054796e970dca5484336501b48",
"past_id": null
},
{
"id": "1f955d99321824edb51f34065fd6bf6d",
"past_id": null
},
{
"id": "9fe445228a1608fee0454a0d783b7183",
"past_id": null
},
{
"id": "331329bda15420cbc26346cab29b664b",
"past_id": null
},
{
"id": "135e840913f8a796b15dc5e0a9f4c72c",
"past_id": null
},
{
"id": "2656c6528a0dff80e1fb619d5db78d72",
"past_id": null
},
{
"id": "a38341d5327dab6f2b2c113b4486e060",
"past_id": null
},
{
"id": "8f6ec3b93f4cdd17d91daed2ce270d61",
"past_id": null
}
],
[
{
"id": "7a0c454d30b87ed7ba7577383c1e66db",
"past_id": "1f955d99321824edb51f34065fd6bf6d"
},
{
"id": "4595fc148424315a5e718464ad4c6806",
"past_id": "8f6ec3b93f4cdd17d91daed2ce270d61"
},
{
"id": "443291ecac85d951672d74098aba5d80",
"past_id": "7b35e7e6e19a6cb906ff0ec4dd00b0d7"
}
],
[]
]
}
],
"current_bracket": 2,
"current_iteration": 0,
"factor": 3,
"hyperband_iterations": 4,
"hyperparameters": {
"space": [
{
"class_name": "Choice",
"config": {
"conditions": [],
"default": 64,
"name": "n_hidden",
"ordered": true,
"values": [
64,
512,
128
]
}
},
{
"class_name": "Choice",
"config": {
"conditions": [],
"default": 48,
"name": "n_dense",
"ordered": true,
"values": [
48,
56,
128
]
}
},
{
"class_name": "Choice",
"config": {
"conditions": [],
"default": 0.2,
"name": "dropout",
"ordered": true,
"values": [
0.2,
0.5
]
}
},
{
"class_name": "Choice",
"config": {
"conditions": [],
"default": 0.1,
"name": "dropout_dense",
"ordered": true,
"values": [
0.1
]
}
},
{
"class_name": "Choice",
"config": {
"conditions": [],
"default": 0.6,
"name": "momentum",
"ordered": true,
"values": [
0.6
]
}
},
{
"class_name": "Choice",
"config": {
"conditions": [],
"default": 0.001,
"name": "learning_rate",
"ordered": true,
"values": [
0.001
]
}
},
{
"class_name": "Choice",
"config": {
"conditions": [],
"default": "LSTM",
"name": "mode",
"ordered": false,
"values": [
"LSTM"
]
}
},
{
"class_name": "Choice",
"config": {
"conditions": [],
"default": "elu",
"name": "activation_rnn",
"ordered": false,
"values": [
"elu"
]
}
},
{
"class_name": "Choice",
"config": {
"conditions": [],
"default": "sigmoid",
"name": "recurrent_activation_rnn",
"ordered": false,
"values": [
"sigmoid"
]
}
},
{
"class_name": "Choice",
"config": {
"conditions": [],
"default": "elu",
"name": "activation_dense",
"ordered": false,
"values": [
"elu"
]
}
},
{
"class_name": "Choice",
"config": {
"conditions": [],
"default": "categorical_crossentropy",
"name": "loss",
"ordered": false,
"values": [
"categorical_crossentropy"
]
}
}
],
"values": {
"activation_dense": "elu",
"activation_rnn": "elu",
"dropout": 0.2,
"dropout_dense": 0.1,
"learning_rate": 0.001,
"loss": "categorical_crossentropy",
"mode": "LSTM",
"momentum": 0.6,
"n_dense": 48,
"n_hidden": 64,
"recurrent_activation_rnn": "sigmoid"
}
},
"max_epochs": 20,
"min_epochs": 1,
"ongoing_trials": {
"tuner0": "443291ecac85d951672d74098aba5d80"
},
"seed": 9306,
"seed_state": 9438,
"tried_so_far": [
"999ad17860a2835f685acaffad22a8e9",
"83912e964572c3e5471b9c1956ac8fc4",
"c53014e5e1523fa1499a3162f6f21221",
"04b5f4035d0d8e3eeee393bd63563f5a",
"3697a835f3f1144b3b6120d9c11521eb",
"43647cb41652f1ec535a14a749d731e9",
"88d5a1ad41730b8854f697f9efbd68ca",
"b5357efc9ad057e78cd58b8aa2861dc9",
"4973018c5f6b84338d88249fc851f8d5",
"7c86520a8761f167ee528223d9450c58",
"9a6e1847de8a317f7e107c96a74ebd88",
"1a7559c42715ecc6df85a76a7cb10e64"
]
}
Issue Analytics
- State:
- Created 3 years ago
- Reactions:1
- Comments:10 (5 by maintainers)
Top Results From Across the Web
How to optimize disk usage when the system is slow
Disk usage is almost 100% and lasts for a long time and the computer speed is slow. Check disk usage in the Performance...
Read more >How to Lower Disk Usage in Windows 10 from 100% to ...0%
How to Lower Disk Usage Effectively (14 Ways) · 1. Restart PC...Full steps · 2. Check for Malware Infection...Full steps · 3. Disable...
Read more >Hard Drive Maintenance: How to Optimize Storage Space - B&H
Click the Start button · In the search box, type “Defragment and Optimize Drives” · In the search results, click “Defragment and Optimize...
Read more >How to Fix 100% Disk Usage in Windows 10 - AVG
Prevent High Disk Usage. Try AVG TuneUp for PC to fix high disk usage, clean up clutter, and get rid of memory-hogging programs....
Read more >8 Tools to Increase Hard Drive Performance on Windows
1. Windows Optimize Drives · 2. Disk SpeedUp · 3. Windows Device Manager · 4. IOBit Advanced SystemCare · 5. Razer Cortex ·...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
It only saves the best epoch per model training now.
I don’t know about the internals of Keras Tuner, but I feel save-points remain of trails (or points of trails), which will never be touched again. But I don’t know how to select those save-points and remove them.