Not able run sklearn-iris example after installing the kubeflow 1.0.2
See original GitHub issue/kind bug
Installed Kubeflow with minkube steps
/kfserving$ kubectl get po -A -n kubeflow | grep kfserving-controller-manager-0
kubeflow kfserving-controller-manager-0 2/2 Running 1 20h
kubectl create namespace kfserving-test
kubectl apply -f docs/samples/sklearn/sklearn.yaml -n kfserving-test
ubuntu@ip-172-31-23-49:~/kfserving$ kubectl get inferenceservices sklearn-iris -n kfserving-test
NAME URL READY DEFAULT TRAFFIC CANARY TRAFFIC AGE
sklearn-iris http://sklearn-iris.kfserving-test.example.com/v1/models/sklearn-iris True 100 3h41m
kubectl port-forward --namespace istio-system $(kubectl get pod --namespace istio-system --selector="app=istio-ingressgateway" --output jsonpath='{.items[0].metadata.name}') 8080:80 &
SERVICE_HOSTNAME=$(kubectl get inferenceservice sklearn-iris -n kfserving-test -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" http://localhost:8080/v1/models/sklearn-iris:predict -d @./docs/samples/sklearn/iris-input.json
output:
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8080 (#0)
> POST /v1/models/sklearn-iris:predict HTTP/1.1
> Host: sklearn-iris.kfserving-test.example.com
> User-Agent: curl/7.58.0
> Accept: */*
> Content-Length: 76
> Content-Type: application/x-www-form-urlencoded
>
* upload completely sent off: 76 out of 76 bytes
< HTTP/1.1 404 Not Found
< x-powered-by: Express
< content-security-policy: default-src 'none'
< x-content-type-options: nosniff
< content-type: text/html; charset=utf-8
< content-length: 170
< date: Thu, 09 Jul 2020 12:55:23 GMT
< x-envoy-upstream-service-time: 0
< server: istio-envoy
<
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Error</title>
</head>
<body>
<pre>Cannot POST /v1/models/sklearn-iris:predict</pre>
</body>
</html>
* Connection #0 to host localhost left intact
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/flowers-sample-predictor-default ExternalName <none> cluster-local-gateway.istio-system.svc.cluster.local <none> 3h33m
service/flowers-sample-predictor-default-hplm7 NodePort 10.107.34.142 <none> 80:32631/TCP 3h33m
service/flowers-sample-predictor-default-hplm7-private ClusterIP 10.100.214.28 <none> 80/TCP,9090/TCP,9091/TCP,8022/TCP 3h33m
service/sklearn-iris-predictor-default ExternalName <none> cluster-local-gateway.istio-system.svc.cluster.local <none> 3h43m
service/sklearn-iris-predictor-default-286n2 ClusterIP 10.98.166.0 <none> 80/TCP 3h43m
service/sklearn-iris-predictor-default-286n2-private ClusterIP 10.96.29.250 <none> 80/TCP,9090/TCP,9091/TCP,8022/TCP 3h43m
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/flowers-sample-predictor-default-hplm7-deployment 0/0 0 0 3h33m
deployment.apps/sklearn-iris-predictor-default-286n2-deployment 0/0 0 0 3h43m
NAME DESIRED CURRENT READY AGE
replicaset.apps/flowers-sample-predictor-default-hplm7-deployment-c5fdfbd9b 0 0 0 3h33m
replicaset.apps/sklearn-iris-predictor-default-286n2-deployment-559997cb97 0 0 0 3h43m
NAME CONFIG NAME K8S SERVICE NAME GENERATION READY REASON
revision.serving.knative.dev/flowers-sample-predictor-default-hplm7 flowers-sample-predictor-default flowers-sample-predictor-default-hplm7 1 True
revision.serving.knative.dev/sklearn-iris-predictor-default-286n2 sklearn-iris-predictor-default sklearn-iris-predictor-default-286n2 1 True
NAME URL READY REASON
route.serving.knative.dev/flowers-sample-predictor-default http://flowers-sample-predictor-default.kfserving-test.example.com True
route.serving.knative.dev/sklearn-iris-predictor-default http://sklearn-iris-predictor-default.kfserving-test.example.com True
NAME URL LATESTCREATED LATESTREADY READY REASON
service.serving.knative.dev/flowers-sample-predictor-default http://flowers-sample-predictor-default.kfserving-test.example.com flowers-sample-predictor-default-hplm7 flowers-sample-predictor-default-hplm7 True
service.serving.knative.dev/sklearn-iris-predictor-default http://sklearn-iris-predictor-default.kfserving-test.example.com sklearn-iris-predictor-default-286n2 sklearn-iris-predictor-default-286n2 True
NAME LATESTCREATED LATESTREADY READY REASON
configuration.serving.knative.dev/flowers-sample-predictor-default flowers-sample-predictor-default-hplm7 flowers-sample-predictor-default-hplm7 True
configuration.serving.knative.dev/sklearn-iris-predictor-default sklearn-iris-predictor-default-286n2 sklearn-iris-predictor-default-286n2 True
Environment: on AWS-ec2
Client Version: version.Info{Major:"1", Minor:"17", GitVersion:"v1.17.3", GitCommit:"06ad960bfd03b39c8310aaf92d1e7c12ce618213", GitTreeState:"clean", BuildDate:"2020-02-11T18:14:22Z", GoVersion:"go1.13.6", Compiler:"gc", Platform:"linux/amd64"}
Server Version: version.Info{Major:"1", Minor:"17", GitVersion:"v1.17.3", GitCommit:"06ad960bfd03b39c8310aaf92d1e7c12ce618213", GitTreeState:"clean", BuildDate:"2020-02-11T18:07:13Z", GoVersion:"go1.13.6", Compiler:"gc", Platform:"linux/amd64"}
Issue Analytics
- State:
- Created 3 years ago
- Comments:14 (6 by maintainers)
Top Results From Across the Web
Not able run sklearn-iris example after installing the kubeflow ...
kind bug Installed Kubeflow with minkube steps /kfserving$ ... Not able run sklearn-iris example after installing the kubeflow 1.0.2 #928.
Read more >Troubleshooting | Kubeflow
The following sections describe how to resolve issues that can occur when installing or using the Kubeflow Pipelines SDK.
Read more >Troubleshooting - Kubeflow
SOLUTION: check events of Notebook. Run the following command then check the events section to make sure that there are no errors: kubectl ......
Read more >Troubleshooting Deployments on GKE - Kubeflow
This guide helps diagnose and fix issues you may encounter with Kubeflow on Google Kubernetes Engine (GKE) and Google Cloud.
Read more >Troubleshooting Guide - Jupyter Notebooks - Kubeflow
First, make sure that PVCs are bounded when using Jupter notebooks. This should not be a problem when using managed Kuberenetes.
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Issue-Label Bot is automatically applying the labels:
Please mark this comment with 👍 or 👎 to give our bot feedback! Links: app homepage, dashboard and code for this bot.
@tiru1930 Awesome! kubeflow 1.1 will be out soon, we also upgraded to kfserving 0.3 there.