question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

Not able run sklearn-iris example after installing the kubeflow 1.0.2

See original GitHub issue

/kind bug

Installed Kubeflow with minkube steps

/kfserving$ kubectl get po -A -n  kubeflow | grep kfserving-controller-manager-0 
kubeflow               kfserving-controller-manager-0                                 2/2     Running     1          20h

kubectl create namespace kfserving-test
kubectl apply -f docs/samples/sklearn/sklearn.yaml -n kfserving-test

ubuntu@ip-172-31-23-49:~/kfserving$ kubectl get inferenceservices sklearn-iris -n kfserving-test
NAME           URL                                                                     READY   DEFAULT TRAFFIC   CANARY TRAFFIC   AGE
sklearn-iris   http://sklearn-iris.kfserving-test.example.com/v1/models/sklearn-iris   True    100                                3h41m

kubectl port-forward --namespace istio-system $(kubectl get pod --namespace istio-system --selector="app=istio-ingressgateway" --output jsonpath='{.items[0].metadata.name}') 8080:80 &
SERVICE_HOSTNAME=$(kubectl get inferenceservice sklearn-iris -n kfserving-test -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" http://localhost:8080/v1/models/sklearn-iris:predict -d @./docs/samples/sklearn/iris-input.json


output: 

*   Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8080 (#0)
> POST /v1/models/sklearn-iris:predict HTTP/1.1
> Host: sklearn-iris.kfserving-test.example.com
> User-Agent: curl/7.58.0
> Accept: */*
> Content-Length: 76
> Content-Type: application/x-www-form-urlencoded
> 
* upload completely sent off: 76 out of 76 bytes
< HTTP/1.1 404 Not Found
< x-powered-by: Express
< content-security-policy: default-src 'none'
< x-content-type-options: nosniff
< content-type: text/html; charset=utf-8
< content-length: 170
< date: Thu, 09 Jul 2020 12:55:23 GMT
< x-envoy-upstream-service-time: 0
< server: istio-envoy
< 
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Error</title>
</head>
<body>
<pre>Cannot POST /v1/models/sklearn-iris:predict</pre>
</body>
</html>
* Connection #0 to host localhost left intact


NAME                                                     TYPE           CLUSTER-IP      EXTERNAL-IP                                            PORT(S)                             AGE
service/flowers-sample-predictor-default                 ExternalName   <none>          cluster-local-gateway.istio-system.svc.cluster.local   <none>                              3h33m
service/flowers-sample-predictor-default-hplm7           NodePort       10.107.34.142   <none>                                                 80:32631/TCP                        3h33m
service/flowers-sample-predictor-default-hplm7-private   ClusterIP      10.100.214.28   <none>                                                 80/TCP,9090/TCP,9091/TCP,8022/TCP   3h33m
service/sklearn-iris-predictor-default                   ExternalName   <none>          cluster-local-gateway.istio-system.svc.cluster.local   <none>                              3h43m
service/sklearn-iris-predictor-default-286n2             ClusterIP      10.98.166.0     <none>                                                 80/TCP                              3h43m
service/sklearn-iris-predictor-default-286n2-private     ClusterIP      10.96.29.250    <none>                                                 80/TCP,9090/TCP,9091/TCP,8022/TCP   3h43m

NAME                                                                READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/flowers-sample-predictor-default-hplm7-deployment   0/0     0            0           3h33m
deployment.apps/sklearn-iris-predictor-default-286n2-deployment     0/0     0            0           3h43m

NAME                                                                          DESIRED   CURRENT   READY   AGE
replicaset.apps/flowers-sample-predictor-default-hplm7-deployment-c5fdfbd9b   0         0         0       3h33m
replicaset.apps/sklearn-iris-predictor-default-286n2-deployment-559997cb97    0         0         0       3h43m

NAME                                                                  CONFIG NAME                        K8S SERVICE NAME                         GENERATION   READY   REASON
revision.serving.knative.dev/flowers-sample-predictor-default-hplm7   flowers-sample-predictor-default   flowers-sample-predictor-default-hplm7   1            True    
revision.serving.knative.dev/sklearn-iris-predictor-default-286n2     sklearn-iris-predictor-default     sklearn-iris-predictor-default-286n2     1            True    

NAME                                                         URL                                                                  READY   REASON
route.serving.knative.dev/flowers-sample-predictor-default   http://flowers-sample-predictor-default.kfserving-test.example.com   True    
route.serving.knative.dev/sklearn-iris-predictor-default     http://sklearn-iris-predictor-default.kfserving-test.example.com     True    

NAME                                                           URL                                                                  LATESTCREATED                            LATESTREADY                              READY   REASON
service.serving.knative.dev/flowers-sample-predictor-default   http://flowers-sample-predictor-default.kfserving-test.example.com   flowers-sample-predictor-default-hplm7   flowers-sample-predictor-default-hplm7   True    
service.serving.knative.dev/sklearn-iris-predictor-default     http://sklearn-iris-predictor-default.kfserving-test.example.com     sklearn-iris-predictor-default-286n2     sklearn-iris-predictor-default-286n2     True    

NAME                                                                 LATESTCREATED                            LATESTREADY                              READY   REASON
configuration.serving.knative.dev/flowers-sample-predictor-default   flowers-sample-predictor-default-hplm7   flowers-sample-predictor-default-hplm7   True    
configuration.serving.knative.dev/sklearn-iris-predictor-default     sklearn-iris-predictor-default-286n2     sklearn-iris-predictor-default-286n2     True  

Environment: on AWS-ec2

Client Version: version.Info{Major:"1", Minor:"17", GitVersion:"v1.17.3", GitCommit:"06ad960bfd03b39c8310aaf92d1e7c12ce618213", GitTreeState:"clean", BuildDate:"2020-02-11T18:14:22Z", GoVersion:"go1.13.6", Compiler:"gc", Platform:"linux/amd64"}
Server Version: version.Info{Major:"1", Minor:"17", GitVersion:"v1.17.3", GitCommit:"06ad960bfd03b39c8310aaf92d1e7c12ce618213", GitTreeState:"clean", BuildDate:"2020-02-11T18:07:13Z", GoVersion:"go1.13.6", Compiler:"gc", Platform:"linux/amd64"}

Issue Analytics

  • State:closed
  • Created 3 years ago
  • Comments:14 (6 by maintainers)

github_iconTop GitHub Comments

1reaction
issue-label-bot[bot]commented, Jul 9, 2020

Issue-Label Bot is automatically applying the labels:

Label Probability
area/inference 0.95

Please mark this comment with 👍 or 👎 to give our bot feedback! Links: app homepage, dashboard and code for this bot.

0reactions
yuzisuncommented, Jul 9, 2020

@tiru1930 Awesome! kubeflow 1.1 will be out soon, we also upgraded to kfserving 0.3 there.

Read more comments on GitHub >

github_iconTop Results From Across the Web

Not able run sklearn-iris example after installing the kubeflow ...
kind bug Installed Kubeflow with minkube steps /kfserving$ ... Not able run sklearn-iris example after installing the kubeflow 1.0.2 #928.
Read more >
Troubleshooting | Kubeflow
The following sections describe how to resolve issues that can occur when installing or using the Kubeflow Pipelines SDK.
Read more >
Troubleshooting - Kubeflow
SOLUTION: check events of Notebook. Run the following command then check the events section to make sure that there are no errors: kubectl ......
Read more >
Troubleshooting Deployments on GKE - Kubeflow
This guide helps diagnose and fix issues you may encounter with Kubeflow on Google Kubernetes Engine (GKE) and Google Cloud.
Read more >
Troubleshooting Guide - Jupyter Notebooks - Kubeflow
First, make sure that PVCs are bounded when using Jupter notebooks. This should not be a problem when using managed Kuberenetes.
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found