[backend] Failed to execute component: unable to get pipeline with PipelineName
See original GitHub issueEnvironment
- How did you deploy Kubeflow Pipelines (KFP)? Install follow https://github.com/kubeflow/manifests in v1.4.1 KFP version: 1.7.0 KFP SDK version: build version dev_local k3s Kubernetes 1.19
Steps to reproduce
use demo example to add pipline kfp 1.8.10 kfp-pipeline-spec 0.1.13 kfp-server-api 1.7.1
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import kfp
import kfp.dsl as dsl
from kfp.v2.dsl import component
from kfp import compiler
@component(
base_image="library/python:3.7"
)
def add(a: float, b: float) -> float:
'''Calculates sum of two arguments'''
return a + b
@dsl.pipeline(
name='v2add',
description='An example pipeline that performs addition calculations.',
# pipeline_root='gs://my-pipeline-root/example-pipeline'
)
def add_pipeline(a: float = 1, b: float = 7):
add_task = add(a, b)
compiler.Compiler(
mode=kfp.dsl.PipelineExecutionMode.V2_COMPATIBLE,
launcher_image='library/gcr.io/ml-pipeline/kfp-launcher:1.8.7'
).compile(pipeline_func=add_pipeline, package_path='pipeline.yaml')
I upload the pipeline.yaml and start a run get error
logs
I1231 10:12:23.830486 1 launcher.go:144] PipelineRoot defaults to "minio://mlpipeline/v2/artifacts".
I1231 10:12:23.830866 1 cache.go:143] Cannot detect ml-pipeline in the same namespace, default to ml-pipeline.kubeflow:8887 as KFP endpoint.
I1231 10:12:23.830880 1 cache.go:120] Connecting to cache endpoint ml-pipeline.kubeflow:8887
F1231 10:12:23.832000 1 main.go:50] Failed to execute component: unable to get pipeline with PipelineName "pipeline/v2add" PipelineRunID "7e2bdeeb-aa6f-4109-a508-63a1be22267c": Failed GetContextByTypeAndName(type="system.Pipeline", name="pipeline/v2add")
pod
kind: Pod
apiVersion: v1
metadata:
name: v2add-rzrht-37236994
namespace: kubeflow-user-example-com
selfLink: /api/v1/namespaces/kubeflow-user-example-com/pods/v2add-rzrht-37236994
uid: 3ceb73e5-80b5-4844-8cc8-8f2bf61319d2
resourceVersion: '28824661'
creationTimestamp: '2021-12-31T10:12:21Z'
labels:
pipeline/runid: 7e2bdeeb-aa6f-4109-a508-63a1be22267c
pipelines.kubeflow.org/cache_enabled: 'true'
pipelines.kubeflow.org/enable_caching: 'true'
pipelines.kubeflow.org/kfp_sdk_version: 1.8.10
pipelines.kubeflow.org/pipeline-sdk-type: kfp
pipelines.kubeflow.org/v2_component: 'true'
workflows.argoproj.io/completed: 'true'
workflows.argoproj.io/workflow: v2add-rzrht
annotations:
pipelines.kubeflow.org/arguments.parameters: '{"a": "1", "b": "7"}'
pipelines.kubeflow.org/component_ref: '{}'
pipelines.kubeflow.org/v2_component: 'true'
sidecar.istio.io/inject: 'false'
workflows.argoproj.io/node-name: v2add-rzrht.add
workflows.argoproj.io/outputs: >-
{"artifacts":[{"name":"add-Output","path":"/tmp/outputs/Output/data"},{"name":"main-logs","s3":{"key":"artifacts/v2add-rzrht/2021/12/31/v2add-rzrht-37236994/main.log"}}]}
workflows.argoproj.io/template: >-
{"name":"add","inputs":{"parameters":[{"name":"a","value":"1"},{"name":"b","value":"7"},{"name":"pipeline-name","value":"pipeline/v2add"},{"name":"pipeline-root","value":""}]},"outputs":{"artifacts":[{"name":"add-Output","path":"/tmp/outputs/Output/data"}]},"metadata":{"annotations":{"pipelines.kubeflow.org/arguments.parameters":"{\"a\":
\"1\", \"b\":
\"7\"}","pipelines.kubeflow.org/component_ref":"{}","pipelines.kubeflow.org/v2_component":"true","sidecar.istio.io/inject":"false"},"labels":{"pipelines.kubeflow.org/cache_enabled":"true","pipelines.kubeflow.org/enable_caching":"true","pipelines.kubeflow.org/kfp_sdk_version":"1.8.10","pipelines.kubeflow.org/pipeline-sdk-type":"kfp","pipelines.kubeflow.org/v2_component":"true"}},"container":{"name":"","image":"library/python:3.7","command":["/kfp-launcher/launch","--mlmd_server_address","$(METADATA_GRPC_SERVICE_HOST)","--mlmd_server_port","$(METADATA_GRPC_SERVICE_PORT)","--runtime_info_json","$(KFP_V2_RUNTIME_INFO)","--container_image","$(KFP_V2_IMAGE)","--task_name","add","--pipeline_name","pipeline/v2add","--run_id","$(KFP_RUN_ID)","--run_resource","workflows.argoproj.io/$(WORKFLOW_ID)","--namespace","$(KFP_NAMESPACE)","--pod_name","$(KFP_POD_NAME)","--pod_uid","$(KFP_POD_UID)","--pipeline_root","","--enable_caching","$(ENABLE_CACHING)","--","a=1","b=7","--"],"args":["sh","-c","\nif
! [ -x \"$(command -v pip)\" ]; then\n python3 -m ensurepip || python3
-m ensurepip --user || apt-get install
python3-pip\nfi\n\nPIP_DISABLE_PIP_VERSION_CHECK=1 python3 -m pip install
--quiet --no-warn-script-location 'kfp==1.8.10' \u0026\u0026 \"$0\"
\"$@\"\n","sh","-ec","program_path=$(mktemp -d)\nprintf \"%s\" \"$0\"
\u003e \"$program_path/ephemeral_component.py\"\npython3 -m
kfp.v2.components.executor_main
--component_module_path
\"$program_path/ephemeral_component.py\"
\"$@\"\n","\nimport kfp\nfrom kfp.v2 import dsl\nfrom kfp.v2.dsl import
*\nfrom typing import *\n\ndef add(a: float, b: float) -\u003e float:\n
'''Calculates sum of two arguments'''\n return a +
b\n\n","--executor_input","{{$}}","--function_to_execute","add"],"envFrom":[{"configMapRef":{"name":"metadata-grpc-configmap","optional":true}}],"env":[{"name":"KFP_POD_NAME","valueFrom":{"fieldRef":{"fieldPath":"metadata.name"}}},{"name":"KFP_POD_UID","valueFrom":{"fieldRef":{"fieldPath":"metadata.uid"}}},{"name":"KFP_NAMESPACE","valueFrom":{"fieldRef":{"fieldPath":"metadata.namespace"}}},{"name":"WORKFLOW_ID","valueFrom":{"fieldRef":{"fieldPath":"metadata.labels['workflows.argoproj.io/workflow']"}}},{"name":"KFP_RUN_ID","valueFrom":{"fieldRef":{"fieldPath":"metadata.labels['pipeline/runid']"}}},{"name":"ENABLE_CACHING","valueFrom":{"fieldRef":{"fieldPath":"metadata.labels['pipelines.kubeflow.org/enable_caching']"}}},{"name":"KFP_V2_IMAGE","value":"library/python:3.7"},{"name":"KFP_V2_RUNTIME_INFO","value":"{\"inputParameters\":
{\"a\": {\"type\": \"DOUBLE\"}, \"b\": {\"type\": \"DOUBLE\"}},
\"inputArtifacts\": {}, \"outputParameters\": {\"Output\": {\"type\":
\"DOUBLE\", \"path\": \"/tmp/outputs/Output/data\"}}, \"outputArtifacts\":
{}}"}],"resources":{},"volumeMounts":[{"name":"kfp-launcher","mountPath":"/kfp-launcher"}]},"volumes":[{"name":"kfp-launcher"}],"initContainers":[{"name":"kfp-launcher","image":"library/gcr.io/ml-pipeline/kfp-launcher:1.8.7","command":["launcher","--copy","/kfp-launcher/launch"],"resources":{},"mirrorVolumeMounts":true}],"archiveLocation":{"archiveLogs":true,"s3":{"endpoint":"minio-service.kubeflow:9000","bucket":"mlpipeline","insecure":true,"accessKeySecret":{"name":"mlpipeline-minio-artifact","key":"accesskey"},"secretKeySecret":{"name":"mlpipeline-minio-artifact","key":"secretkey"},"key":"artifacts/v2add-rzrht/2021/12/31/v2add-rzrht-37236994"}}}
ownerReferences:
- apiVersion: argoproj.io/v1alpha1
kind: Workflow
name: v2add-rzrht
uid: 9a806b04-d5fa-49eb-9e46-7502bc3e7ac5
controller: true
blockOwnerDeletion: true
managedFields:
- manager: workflow-controller
operation: Update
apiVersion: v1
time: '2021-12-31T10:12:21Z'
fieldsType: FieldsV1
fieldsV1:
'f:metadata':
'f:annotations':
.: {}
'f:pipelines.kubeflow.org/arguments.parameters': {}
'f:pipelines.kubeflow.org/component_ref': {}
'f:pipelines.kubeflow.org/v2_component': {}
'f:sidecar.istio.io/inject': {}
'f:workflows.argoproj.io/node-name': {}
'f:workflows.argoproj.io/template': {}
'f:labels':
.: {}
'f:pipeline/runid': {}
'f:pipelines.kubeflow.org/cache_enabled': {}
'f:pipelines.kubeflow.org/enable_caching': {}
'f:pipelines.kubeflow.org/kfp_sdk_version': {}
'f:pipelines.kubeflow.org/pipeline-sdk-type': {}
'f:pipelines.kubeflow.org/v2_component': {}
'f:workflows.argoproj.io/completed': {}
'f:workflows.argoproj.io/workflow': {}
'f:ownerReferences':
.: {}
'k:{"uid":"9a806b04-d5fa-49eb-9e46-7502bc3e7ac5"}':
.: {}
'f:apiVersion': {}
'f:blockOwnerDeletion': {}
'f:controller': {}
'f:kind': {}
'f:name': {}
'f:uid': {}
'f:spec':
'f:containers':
'k:{"name":"main"}':
.: {}
'f:args': {}
'f:command': {}
'f:env':
.: {}
'k:{"name":"ARGO_CONTAINER_NAME"}':
.: {}
'f:name': {}
'f:value': {}
'k:{"name":"ARGO_INCLUDE_SCRIPT_OUTPUT"}':
.: {}
'f:name': {}
'f:value': {}
'k:{"name":"ENABLE_CACHING"}':
.: {}
'f:name': {}
'f:valueFrom':
.: {}
'f:fieldRef':
.: {}
'f:apiVersion': {}
'f:fieldPath': {}
'k:{"name":"KFP_NAMESPACE"}':
.: {}
'f:name': {}
'f:valueFrom':
.: {}
'f:fieldRef':
.: {}
'f:apiVersion': {}
'f:fieldPath': {}
'k:{"name":"KFP_POD_NAME"}':
.: {}
'f:name': {}
'f:valueFrom':
.: {}
'f:fieldRef':
.: {}
'f:apiVersion': {}
'f:fieldPath': {}
'k:{"name":"KFP_POD_UID"}':
.: {}
'f:name': {}
'f:valueFrom':
.: {}
'f:fieldRef':
.: {}
'f:apiVersion': {}
'f:fieldPath': {}
'k:{"name":"KFP_RUN_ID"}':
.: {}
'f:name': {}
'f:valueFrom':
.: {}
'f:fieldRef':
.: {}
'f:apiVersion': {}
'f:fieldPath': {}
'k:{"name":"KFP_V2_IMAGE"}':
.: {}
'f:name': {}
'f:value': {}
'k:{"name":"KFP_V2_RUNTIME_INFO"}':
.: {}
'f:name': {}
'f:value': {}
'k:{"name":"WORKFLOW_ID"}':
.: {}
'f:name': {}
'f:valueFrom':
.: {}
'f:fieldRef':
.: {}
'f:apiVersion': {}
'f:fieldPath': {}
'f:envFrom': {}
'f:image': {}
'f:imagePullPolicy': {}
'f:name': {}
'f:resources': {}
'f:terminationMessagePath': {}
'f:terminationMessagePolicy': {}
'f:volumeMounts':
.: {}
'k:{"mountPath":"/kfp-launcher"}':
.: {}
'f:mountPath': {}
'f:name': {}
'k:{"name":"wait"}':
.: {}
'f:command': {}
'f:env':
.: {}
'k:{"name":"ARGO_CONTAINER_NAME"}':
.: {}
'f:name': {}
'f:value': {}
'k:{"name":"ARGO_CONTAINER_RUNTIME_EXECUTOR"}':
.: {}
'f:name': {}
'f:value': {}
'k:{"name":"ARGO_INCLUDE_SCRIPT_OUTPUT"}':
.: {}
'f:name': {}
'f:value': {}
'k:{"name":"ARGO_POD_NAME"}':
.: {}
'f:name': {}
'f:valueFrom':
.: {}
'f:fieldRef':
.: {}
'f:apiVersion': {}
'f:fieldPath': {}
'k:{"name":"GODEBUG"}':
.: {}
'f:name': {}
'f:value': {}
'f:image': {}
'f:imagePullPolicy': {}
'f:name': {}
'f:resources':
.: {}
'f:limits':
.: {}
'f:cpu': {}
'f:memory': {}
'f:requests':
.: {}
'f:cpu': {}
'f:memory': {}
'f:terminationMessagePath': {}
'f:terminationMessagePolicy': {}
'f:volumeMounts':
.: {}
'k:{"mountPath":"/argo/podmetadata"}':
.: {}
'f:mountPath': {}
'f:name': {}
'k:{"mountPath":"/argo/secret/mlpipeline-minio-artifact"}':
.: {}
'f:mountPath': {}
'f:name': {}
'f:readOnly': {}
'k:{"mountPath":"/mainctrfs/kfp-launcher"}':
.: {}
'f:mountPath': {}
'f:name': {}
'k:{"mountPath":"/var/run/docker.sock"}':
.: {}
'f:mountPath': {}
'f:name': {}
'f:readOnly': {}
'f:dnsPolicy': {}
'f:enableServiceLinks': {}
'f:initContainers':
.: {}
'k:{"name":"kfp-launcher"}':
.: {}
'f:command': {}
'f:env':
.: {}
'k:{"name":"ARGO_CONTAINER_NAME"}':
.: {}
'f:name': {}
'f:value': {}
'k:{"name":"ARGO_INCLUDE_SCRIPT_OUTPUT"}':
.: {}
'f:name': {}
'f:value': {}
'f:image': {}
'f:imagePullPolicy': {}
'f:name': {}
'f:resources': {}
'f:terminationMessagePath': {}
'f:terminationMessagePolicy': {}
'f:volumeMounts':
.: {}
'k:{"mountPath":"/kfp-launcher"}':
.: {}
'f:mountPath': {}
'f:name': {}
'f:restartPolicy': {}
'f:schedulerName': {}
'f:securityContext': {}
'f:serviceAccount': {}
'f:serviceAccountName': {}
'f:terminationGracePeriodSeconds': {}
'f:volumes':
.: {}
'k:{"name":"docker-sock"}':
.: {}
'f:hostPath':
.: {}
'f:path': {}
'f:type': {}
'f:name': {}
'k:{"name":"kfp-launcher"}':
.: {}
'f:emptyDir': {}
'f:name': {}
'k:{"name":"mlpipeline-minio-artifact"}':
.: {}
'f:name': {}
'f:secret':
.: {}
'f:defaultMode': {}
'f:items': {}
'f:secretName': {}
'k:{"name":"podmetadata"}':
.: {}
'f:downwardAPI':
.: {}
'f:defaultMode': {}
'f:items': {}
'f:name': {}
- manager: k3s
operation: Update
apiVersion: v1
time: '2021-12-31T10:12:24Z'
fieldsType: FieldsV1
fieldsV1:
'f:status':
'f:conditions':
'k:{"type":"ContainersReady"}':
.: {}
'f:lastProbeTime': {}
'f:lastTransitionTime': {}
'f:message': {}
'f:reason': {}
'f:status': {}
'f:type': {}
'k:{"type":"Initialized"}':
.: {}
'f:lastProbeTime': {}
'f:lastTransitionTime': {}
'f:status': {}
'f:type': {}
'k:{"type":"Ready"}':
.: {}
'f:lastProbeTime': {}
'f:lastTransitionTime': {}
'f:message': {}
'f:reason': {}
'f:status': {}
'f:type': {}
'f:containerStatuses': {}
'f:hostIP': {}
'f:initContainerStatuses': {}
'f:phase': {}
'f:podIP': {}
'f:podIPs':
.: {}
'k:{"ip":"10.42.0.101"}':
.: {}
'f:ip': {}
'f:startTime': {}
- manager: argoexec
operation: Update
apiVersion: v1
time: '2021-12-31T10:12:25Z'
fieldsType: FieldsV1
fieldsV1:
'f:metadata':
'f:annotations':
'f:workflows.argoproj.io/outputs': {}
status:
phase: Failed
conditions:
- type: Initialized
status: 'True'
lastProbeTime: null
lastTransitionTime: '2021-12-31T10:12:23Z'
- type: Ready
status: 'False'
lastProbeTime: null
lastTransitionTime: '2021-12-31T10:12:21Z'
reason: ContainersNotReady
message: 'containers with unready status: [wait main]'
- type: ContainersReady
status: 'False'
lastProbeTime: null
lastTransitionTime: '2021-12-31T10:12:21Z'
reason: ContainersNotReady
message: 'containers with unready status: [wait main]'
- type: PodScheduled
status: 'True'
lastProbeTime: null
lastTransitionTime: '2021-12-31T10:12:21Z'
hostIP: 10.19.64.214
podIP: 10.42.0.101
podIPs:
- ip: 10.42.0.101
startTime: '2021-12-31T10:12:21Z'
initContainerStatuses:
- name: kfp-launcher
state:
terminated:
exitCode: 0
reason: Completed
startedAt: '2021-12-31T10:12:22Z'
finishedAt: '2021-12-31T10:12:22Z'
containerID: >-
docker://fbf8b39a3bab8065b54e9a3b25a678e07e0880ef61f9e78abe92f9fa205a73c4
lastState: {}
ready: true
restartCount: 0
image: 'library/gcr.io/ml-pipeline/kfp-launcher:1.8.7'
imageID: >-
docker-pullable://library/gcr.io/ml-pipeline/kfp-launcher@sha256:8b3f14d468a41c319e95ef4047b7823c64480fd1980c3d5b369c8412afbc684f
containerID: >-
docker://fbf8b39a3bab8065b54e9a3b25a678e07e0880ef61f9e78abe92f9fa205a73c4
containerStatuses:
- name: main
state:
terminated:
exitCode: 1
reason: Error
startedAt: '2021-12-31T10:12:23Z'
finishedAt: '2021-12-31T10:12:23Z'
containerID: >-
docker://26faae59907e5a4207960ee9d15d9d350587c5be7db31c3e8f0ec97e72c6d2cf
lastState: {}
ready: false
restartCount: 0
image: 'python:3.7'
imageID: >-
docker-pullable://python@sha256:3908249ce6b2d28284e3610b07bf406c3035bc2e3ce328711a2b42e1c5a75fc1
containerID: >-
docker://26faae59907e5a4207960ee9d15d9d350587c5be7db31c3e8f0ec97e72c6d2cf
started: false
- name: wait
state:
terminated:
exitCode: 1
reason: Error
message: >-
path /tmp/outputs/Output/data does not exist in archive
/tmp/argo/outputs/artifacts/add-Output.tgz
startedAt: '2021-12-31T10:12:23Z'
finishedAt: '2021-12-31T10:12:25Z'
containerID: >-
docker://66b6306eb81ac2abb1fbf2609d7375a00f92891f1c827680a45962cbb1ec3c0a
lastState: {}
ready: false
restartCount: 0
image: 'library/gcr.io/ml-pipeline/argoexec:v3.1.6-patch-license-compliance'
imageID: >-
docker-pullable://library/gcr.io/ml-pipeline/argoexec@sha256:44cf8455a51aa5b961d1a86f65e39adf5ffca9bdcd33a745c3b79f430b7439e0
containerID: >-
docker://66b6306eb81ac2abb1fbf2609d7375a00f92891f1c827680a45962cbb1ec3c0a
started: false
qosClass: Burstable
spec:
volumes:
- name: podmetadata
downwardAPI:
items:
- path: annotations
fieldRef:
apiVersion: v1
fieldPath: metadata.annotations
defaultMode: 420
- name: docker-sock
hostPath:
path: /var/run/docker.sock
type: Socket
- name: kfp-launcher
emptyDir: {}
- name: mlpipeline-minio-artifact
secret:
secretName: mlpipeline-minio-artifact
items:
- key: accesskey
path: accesskey
- key: secretkey
path: secretkey
defaultMode: 420
- name: default-editor-token-8lmfr
secret:
secretName: default-editor-token-8lmfr
defaultMode: 420
initContainers:
- name: kfp-launcher
image: 'library/gcr.io/ml-pipeline/kfp-launcher:1.8.7'
command:
- launcher
- '--copy'
- /kfp-launcher/launch
env:
- name: ARGO_CONTAINER_NAME
value: kfp-launcher
- name: ARGO_INCLUDE_SCRIPT_OUTPUT
value: 'false'
resources: {}
volumeMounts:
- name: kfp-launcher
mountPath: /kfp-launcher
- name: default-editor-token-8lmfr
readOnly: true
mountPath: /var/run/secrets/kubernetes.io/serviceaccount
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
imagePullPolicy: IfNotPresent
containers:
- name: wait
image: 'library/gcr.io/ml-pipeline/argoexec:v3.1.6-patch-license-compliance'
command:
- argoexec
- wait
- '--loglevel'
- info
env:
- name: ARGO_POD_NAME
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: metadata.name
- name: ARGO_CONTAINER_RUNTIME_EXECUTOR
value: docker
- name: GODEBUG
value: x509ignoreCN=0
- name: ARGO_CONTAINER_NAME
value: wait
- name: ARGO_INCLUDE_SCRIPT_OUTPUT
value: 'false'
resources:
limits:
cpu: 500m
memory: 512Mi
requests:
cpu: 10m
memory: 32Mi
volumeMounts:
- name: podmetadata
mountPath: /argo/podmetadata
- name: docker-sock
readOnly: true
mountPath: /var/run/docker.sock
- name: mlpipeline-minio-artifact
readOnly: true
mountPath: /argo/secret/mlpipeline-minio-artifact
- name: kfp-launcher
mountPath: /mainctrfs/kfp-launcher
- name: default-editor-token-8lmfr
readOnly: true
mountPath: /var/run/secrets/kubernetes.io/serviceaccount
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
imagePullPolicy: IfNotPresent
- name: main
image: 'library/python:3.7'
command:
- /kfp-launcher/launch
- '--mlmd_server_address'
- $(METADATA_GRPC_SERVICE_HOST)
- '--mlmd_server_port'
- $(METADATA_GRPC_SERVICE_PORT)
- '--runtime_info_json'
- $(KFP_V2_RUNTIME_INFO)
- '--container_image'
- $(KFP_V2_IMAGE)
- '--task_name'
- add
- '--pipeline_name'
- pipeline/v2add
- '--run_id'
- $(KFP_RUN_ID)
- '--run_resource'
- workflows.argoproj.io/$(WORKFLOW_ID)
- '--namespace'
- $(KFP_NAMESPACE)
- '--pod_name'
- $(KFP_POD_NAME)
- '--pod_uid'
- $(KFP_POD_UID)
- '--pipeline_root'
- ''
- '--enable_caching'
- $(ENABLE_CACHING)
- '--'
- a=1
- b=7
- '--'
args:
- sh
- '-c'
- >
if ! [ -x "$(command -v pip)" ]; then
python3 -m ensurepip || python3 -m ensurepip --user || apt-get install python3-pip
fi
PIP_DISABLE_PIP_VERSION_CHECK=1 python3 -m pip install --quiet
--no-warn-script-location 'kfp==1.8.10' && "$0" "$@"
- sh
- '-ec'
- >
program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
python3 -m kfp.v2.components.executor_main
--component_module_path
"$program_path/ephemeral_component.py" "$@"
- |+
import kfp
from kfp.v2 import dsl
from kfp.v2.dsl import *
from typing import *
def add(a: float, b: float) -> float:
'''Calculates sum of two arguments'''
return a + b
- '--executor_input'
- '{{$}}'
- '--function_to_execute'
- add
envFrom:
- configMapRef:
name: metadata-grpc-configmap
optional: true
env:
- name: KFP_POD_NAME
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: metadata.name
- name: KFP_POD_UID
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: metadata.uid
- name: KFP_NAMESPACE
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: metadata.namespace
- name: WORKFLOW_ID
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: 'metadata.labels[''workflows.argoproj.io/workflow'']'
- name: KFP_RUN_ID
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: 'metadata.labels[''pipeline/runid'']'
- name: ENABLE_CACHING
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: 'metadata.labels[''pipelines.kubeflow.org/enable_caching'']'
- name: KFP_V2_IMAGE
value: 'library/python:3.7'
- name: KFP_V2_RUNTIME_INFO
value: >-
{"inputParameters": {"a": {"type": "DOUBLE"}, "b": {"type":
"DOUBLE"}}, "inputArtifacts": {}, "outputParameters": {"Output":
{"type": "DOUBLE", "path": "/tmp/outputs/Output/data"}},
"outputArtifacts": {}}
- name: ARGO_CONTAINER_NAME
value: main
- name: ARGO_INCLUDE_SCRIPT_OUTPUT
value: 'false'
resources: {}
volumeMounts:
- name: kfp-launcher
mountPath: /kfp-launcher
- name: default-editor-token-8lmfr
readOnly: true
mountPath: /var/run/secrets/kubernetes.io/serviceaccount
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
imagePullPolicy: IfNotPresent
restartPolicy: Never
terminationGracePeriodSeconds: 30
dnsPolicy: ClusterFirst
serviceAccountName: default-editor
serviceAccount: default-editor
nodeName: iz1bb01rvtheuakv3h25ntz
securityContext: {}
schedulerName: default-scheduler
tolerations:
- key: node.kubernetes.io/not-ready
operator: Exists
effect: NoExecute
tolerationSeconds: 300
- key: node.kubernetes.io/unreachable
operator: Exists
effect: NoExecute
tolerationSeconds: 300
priority: 0
enableServiceLinks: true
preemptionPolicy: PreemptLowerPriority
I don’t know why it can’t find the PipelineName?
Impacted by this bug? Give it a 👍. We prioritise the issues with the most 👍.
Issue Analytics
- State:
- Created 2 years ago
- Reactions:10
- Comments:6
Top Results From Across the Web
Chapter 4. Kubeflow Pipelines - O'Reilly
We will start this chapter by taking a look at the Pipelines UI and showing how to start writing simple pipelines in Python....
Read more >kfp.dsl package — Kubeflow Pipelines documentation
Parameters: name – the name of the op. It does not have to be unique within a pipeline because the pipeline will generates...
Read more >Troubleshooting - Harness.io Docs
Error messages of the form User does not have "Deployment: execute" permission indicate that your user group's Application Permissions > ...
Read more >Red Hat OpenShift Pipelines release notes
When you run Maven and Jib-Maven cluster tasks, the default container image is supported only on Intel (x86) architecture. Therefore, tasks will fail...
Read more >CI/CD OpenShift Container Platform 4.11
Deleting the Red Hat OpenShift Pipelines components and Custom Resources · 3.4.2. ... When the hook fails it marks the build as failed...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
I have also the same issue with v2 on KubeFlow Pipelines 1.7.0 with KubeFlow 1.4.0 Manifest On-prem installation.
@chensun: Can you elaborate, what do you mean with “non v2 compatible mode”? From
kfp.dsl.PipelineExecutionMode
, there is onlyV1_LEGACY
,V2_COMPATIBLE
. TheV2_ENGINE
just through an error. V1_LEGACY doesn’t run kfp.v2.dsl.component. AndV2_COMPATIBLE
mode gives the error in this thread.So basicly, V2 KFP SDK is not ready and can be run nowhere? Please correct if I am wrong.
@ccurro, short answer is yes. You can only run such pipelines on Vertex Pipelines. That being said, we did recently released both KFP 2.0.0 alpha and KFP SDK 2.0.0 alpha, which supports running pipelines defined in v2 DSL in the open source KFP backend. Since it’s in the alpha state, expect that it’s not feature complete and could have many bugs.