Error when train with new data
See original GitHub issueI tried to train the Enet with own data but it caused a error. It is a problem with FIFOQueue. Our data have 715 images for training and 105 for validation and 100 for testing.
Can you help me to figure out this problem. Thanks a lot. Anh
2017-08-15 16:48:45.882942: W tensorflow/core/framework/op_kernel.cc:1158] Out of range: FIFOQueue '_1_batch/fifo_queue' is closed and has insufficient elements (requested 5, current size 0)
[[Node: batch = QueueDequeueUpToV2[component_types=[DT_FLOAT, DT_UINT8], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](batch/fifo_queue, batch/n)]]
2017-08-15 16:48:45.883176: W tensorflow/core/framework/op_kernel.cc:1158] Out of range: FIFOQueue '_1_batch/fifo_queue' is closed and has insufficient elements (requested 5, current size 0)
[[Node: batch = QueueDequeueUpToV2[component_types=[DT_FLOAT, DT_UINT8], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](batch/fifo_queue, batch/n)]]
2017-08-15 16:48:45.883198: W tensorflow/core/framework/op_kernel.cc:1158] Out of range: FIFOQueue '_1_batch/fifo_queue' is closed and has insufficient elements (requested 5, current size 0)
[[Node: batch = QueueDequeueUpToV2[component_types=[DT_FLOAT, DT_UINT8], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](batch/fifo_queue, batch/n)]]
2017-08-15 16:48:45.883214: W tensorflow/core/framework/op_kernel.cc:1158] Out of range: FIFOQueue '_1_batch/fifo_queue' is closed and has insufficient elements (requested 5, current size 0)
[[Node: batch = QueueDequeueUpToV2[component_types=[DT_FLOAT, DT_UINT8], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](batch/fifo_queue, batch/n)]]
2017-08-15 16:48:45.883861: W tensorflow/core/framework/op_kernel.cc:1158] Out of range: FIFOQueue '_1_batch/fifo_queue' is closed and has insufficient elements (requested 5, current size 0)
[[Node: batch = QueueDequeueUpToV2[component_types=[DT_FLOAT, DT_UINT8], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](batch/fifo_queue, batch/n)]]
2017-08-15 16:48:45.886415: W tensorflow/core/framework/op_kernel.cc:1158] Out of range: FIFOQueue '_1_batch/fifo_queue' is closed and has insufficient elements (requested 5, current size 0)
[[Node: batch = QueueDequeueUpToV2[component_types=[DT_FLOAT, DT_UINT8], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](batch/fifo_queue, batch/n)]]
Traceback (most recent call last):
File "train_enet.py", line 357, in <module>
run()
File "train_enet.py", line 172, in run
with slim.arg_scope(ENet_arg_scope(weight_decay=weight_decay)):
File "/home/leducanh/.pyenv/versions/anaconda3-2.5.0/envs/tensorflow120/lib/python2.7/contextlib.py", line 35, in __exit__
self.gen.throw(type, value, traceback)
File "/home/leducanh/.pyenv/versions/anaconda3-2.5.0/envs/tensorflow120/lib/python2.7/site-packages/tensorflow/python/training/supervisor.py", line 964, in managed_session
self.stop(close_summary_writer=close_summary_writer)
File "/home/leducanh/.pyenv/versions/anaconda3-2.5.0/envs/tensorflow120/lib/python2.7/site-packages/tensorflow/python/training/supervisor.py", line 792, in stop
stop_grace_period_secs=self._stop_grace_secs)
File "/home/leducanh/.pyenv/versions/anaconda3-2.5.0/envs/tensorflow120/lib/python2.7/site-packages/tensorflow/python/training/coordinator.py", line 389, in join
six.reraise(*self._exc_info_to_raise)
File "/home/leducanh/.pyenv/versions/anaconda3-2.5.0/envs/tensorflow120/lib/python2.7/site-packages/tensorflow/python/training/queue_runner_impl.py", line 238, in _run
enqueue_callable()
File "/home/leducanh/.pyenv/versions/anaconda3-2.5.0/envs/tensorflow120/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1063, in _single_operation_run
target_list_as_strings, status, None)
File "/home/leducanh/.pyenv/versions/anaconda3-2.5.0/envs/tensorflow120/lib/python2.7/contextlib.py", line 24, in __exit__
self.gen.next()
File "/home/leducanh/.pyenv/versions/anaconda3-2.5.0/envs/tensorflow120/lib/python2.7/site-packages/tensorflow/python/framework/errors_impl.py", line 466, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Shape mismatch in tuple component 1. Expected [202,360,1], got [202,360,3]
[[Node: batch/fifo_queue_enqueue = QueueEnqueueV2[Tcomponents=[DT_FLOAT, DT_UINT8], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](batch/fifo_queue, Squeeze/_2975, Squeeze_1/_2977)]]
Issue Analytics
- State:
- Created 6 years ago
- Comments:5 (2 by maintainers)
Top Results From Across the Web
Types of Errors We See with Training Data - Appen
Labeling, unbalanced, and bias are the most common errors in training data during the annotation process. Read more to learn how to avoid....
Read more >What are the “training error” and “test error” used in deep ...
Training error is simply an error that occurs during model training, i.e. dataset inappropriately handle during preprocessing or in feature ...
Read more >Assessing the Performance (Types and Sources of Error) in ...
The training error is defined as the average loss that occurred during ... model which adversely impacts its performance on new unseen data....
Read more >3. Training error vs Test error - YouTube
Training error vs Test error. 9K views 2 years ago ... The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
Read more >Training & Test Error: Validating Models in Machine Learning
Test Error: We get this by using two completely disjoint datasets: one to train the model and the other to calculate the classification...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
@ducanh841988 I edited your error code (it is easier to look this way). So if you look at the error:
Shape mismatch in tuple component 1. Expected [202,360,1], got [202,360,3]
you might be feeding in an RGB image instead of a grayscale image annotation. The ground truth annotation must be a grayscale image where each pixel is labelled with its class and not the RGB values.@kwotsin were you able to solve the issue. did rgb2gray work for you?