Aliasing everywhere
See original GitHub issuex_complex[::stride]
can be lossless while abs(x_complex)[::stride]
isn’t; modulus expands the spectrum. Stride and modulus commute, hence we lose information.
This yielded max 25% relative absolute difference on a simple example I tried, in second order:
sc.oversampling = 0
o0 = sc(x)
sc.oversampling = 999
o1 = sc(x)[:, ::sc.T]
adiff = np.abs(o0 - o1) / (np.abs(o0) + 1e7)
However, I noticed 1) difference in first order was <.01%
, as expected; 2) second-order coeffs matched within a scalar multiple of 1.27
.
This is tricky to interpret. Lossless subsampling preserves all information, yet a nonlinearity (abs
) on this “identical” data produces a different result. From point of view of abs
, we do lose information - obvious if we take abs
first and then subsample. Yet, we can fully invert the complex subsampling and then take abs
to produce the exact same abs
.
However, consider if the nonlinearity instead mapped the first FFT bin to Nyquist, for any input length - e.g. (-1)**floor(x / factor)
. Then, no matter how much we FFT upsample, there’s always content at Nyquist. Hence I think the correct answer is, the perspective that matters is that of the intended operators; if our transform relied on the original 1Hz becoming Nyquist, this’ll be impossible post-subsampling. Similarly, scattering relies on modulus, and modulus isn’t same post-subsampling: the continuous-time math is distorted.
Thus, allclose(o0, o1)
must pass - namely, o0 must agree with o1. This suggests potential need for a normalizing factor dependent upon k
’s. Outstanding:
- Is there exact math for this?
- Is the difference always a constant scaling?
code
import numpy as np
from scipy.fft import fft, ifft
from kymatio.numpy import Scattering1D
from kymatio.visuals import plot
sc = Scattering1D(8, 2048, Q=8, T=256, max_pad_factor=None)
x = np.random.randn(sc.N)
#%%
def adiff(x0, x1):
return np.abs(x0 - x1) / (np.abs(x0) + 1e-7)
def padiff(x0, x1):
d = adiff(x0, x1)
print(d.min(), d.max(), d.mean(), [n[0] for n in np.where(d == d.max())])
#%%
sc.oversampling = 0
o0 = sc(x)
sc.oversampling = 999
o1 = sc(x)[:, ::sc.T]
ord1_idxs, ord2_idxs = (sc.meta()['order'] == 1), (sc.meta()['order'] == 2)
o0_1, o1_1 = o0[ord1_idxs], o1[ord1_idxs]
o0_2, o1_2 = o0[ord2_idxs], o1[ord2_idxs]
padiff(o0_1, o1_1)
padiff(o0_2, o1_2)
#%% compute for one specific coefficient
n1 = 42
n2 = -1
pf1 = sc.psi1_f[n1][0]
j1 = sc.psi1_f[n1]['j']
j2 = sc.psi1_f[n2]['j']
pf20 = sc.psi2_f[n2][j1]
pf21 = sc.psi2_f[n2][0]
np.random.seed(0)
xp = np.pad(x, (len(pf1) - len(x))//2, mode='reflect')
xf = fft(xp)
o0, o1 = {}, {}
o0['0'] = xf * pf1
o0['1'] = o0['0'].reshape(2**j1, -1).mean(axis=0)
o0['2'] = ifft(o0['1'])
o0['3'] = np.abs(o0['2'])
o0['4'] = fft(o0['3'])
o0['5'] = o0['4'] * pf20
o0['6'] = o0['5'].reshape(2**int(j2 - j1), -1).mean(axis=0)
o0['7'] = ifft(o0['6'])
o0['8'] = np.abs(o0['7'])
o0['9'] = fft(o0['8'])
o0['10'] = o0['9'] * sc.phi_f[j2]
o0['11'] = o0['10'].reshape(sc.T//2**j2, -1).mean(axis=0)
o0['12'] = ifft(o0['11']).real
o1['0'] = xf * pf1
o1['2'] = ifft(o1['0'])
o1['3'] = np.abs(o1['2'])
o1['4'] = fft(o1['3'])
o1['5'] = o1['4'] * pf21
o1['7'] = ifft(o1['5'])
o1['8'] = np.abs(o1['7'])
o1['9'] = fft(o1['8'])
o1['10'] = o1['9'] * sc.phi_f[0]
o1['11'] = o1['10'].reshape(sc.T, -1).mean(axis=0)
o1['12'] = ifft(o1['11']).real
O0, O1 = o0['12'], o1['12']
s, e = sc.ind_start[sc.log2_T], sc.ind_end[sc.log2_T]
O0u, O1u = O0[s:e], O1[s:e]
padiff(O0, O1)
padiff(O0u, O1u)
print()
#%%
for i in (0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12):
if i in (3, 8):
print()
i = str(i)
c0, c1 = o0[i], o1[i]
c0 = c0[1:len(c0)//2]
c1 = c1[1:len(c1)//2]
# c0 = c0 / np.abs(c0).max()
# c1 = c1 / np.abs(c1).max()
mx = max(np.abs(c0).max(), np.abs(c1).max()) * 1.05
pkw = dict(abs=1, show=1, ylims=(0, mx))
plot(c0, title=f"o0-{i}", **pkw)
plot(c1, title=f"o1-{i}", **pkw)
Issue Analytics
- State:
- Created 2 years ago
- Comments:5
Top GitHub Comments
Excellent troubleshooting work !!
Also >1% at first order is possible but is much rarer, I guess since aliasing the aliased compounds.